Targeting STAT3 and P300 in Treatment Resistant Multiple Myeloma to Inhibit MYC Expression and Decrease Cellular Viability

By: Rajasree Hariprasad, BSc, Alabama College of Osteopathic Medicine; Benjamin Barwick, PhD, Emory University; David Alan Frank, MD, PhD, Emory University

Abstract

Multiple myeloma arises due to genetic and epigenetic alterations in cellular pathways that converge on ectopic MYC expression. The aberrant activation of the oncogenic transcription factor STAT3 has been of interest, given microenvironment & secretion is known to activate STAT3 and confer therapeutic resistance. Additionally, MYC translocations in multiple myeloma lead to an increased proximity of the MYC gene to super-enhancer regions, where histone acetyltransferase P300 is preferentially localized. CHIP-seq data for the B lymphoblastoid line GM12878 showed 66.2% (16.062 / 24.257) of STAT3-bound sites also had P300 binding (ENCODE). This study aims to test the hypothesis that the combination of the P300 inhibitor GNE781 with the STAT3 inhibitor atovaquone or pyrimethamine, would synergize to inhibit MYC expression and decrease viability of multiple myeloma cells. We utilized JNJ3 myeloma cell lines, in which the endogenous MYC locus had a modified green fluorescent protein (GFP) with a two-hour half-life knock-in using CRISPR/Cas9 (Steinberger et al. Cell Chemical Biology, 2019). Cells were treated with various dosages of EP300 and STAT3 inhibitors and were monitored daily over a 72-hour time course for GFP expression and relative viable cell number. Combining EP300 inhibitor atovaquone with GM12878 STAT3 inhibitor at 20uM atovaquone/STAT3, pyrimethamine in decreased cell viability and GFP expression after 72 hours. This frame is consistent with the transcriptional inhibitors time requirement to inhibit transcription and for its target mRNA to decay. Atovaquone and pyrimethamine demonstrated viability and GFP downregulation of their lowest therapeutic dosages, indicating a potential synergistic effect with the GNE781. To explore further additional combinations of both drugs should be tested, including higher doses of atovaquone and pyrimethamine. Additionally, it underscores the potential value of studying the effects of different dosage combinations of these drugs on multiple myeloma cell lines.

Materials and Methods

• Technique used to analyze and quantify characteristics of individual cells or particles in fluid sample
• Measurement of fluorescence and light scattering properties of cells, utilizing a combination of lasers, optics and detectors to analyze and sort cells
• CRISPR/Cas9: somatic cell engineering techniques were used to develop JNJ3 cell line, where MYC expression can be measured with a surrogate reporter, Green Fluorescent Protein (GFP) (Steinberger et al. 2019).
• Flowjo = Software to view and analyze flow cytometry data
• Gating refers to selecting subset of collected events for analysis
1. Eliminating background signals
2. Discriminating between “live” and “dead” cells
3. Removing non single cells (doublets, clumps, or debris)

Discussion/Conclusion

The findings of this study reveal a notable decrease in MYC expression and cell viability when various doses of the EP300 inhibitor are combined with STAT inhibitor. Specifically, our repeated measurements consistently showed a significant reduction in cytotoxicity and MYC expression at dosages of 25nM GNE781 in conjunction with SUM of both Atovaquone and Pyrimethamine, following a 72-hour incubation period. Moreover, the analysis of our data using the SynergyFinder software unveiled intriguing results. The combination of GNE781 with Atovaquone yielded a Bliss score of 0.70, while its combination with Pyrimethamine resulted in a higher Bliss score of 1.36, again, at the 72-hour time point. These outcomes suggest a time-dependent enhancement in the synergy of cell viability. The significance of the 72-hour mark lies in its alignment with the typical duration required for transcriptional inhibition to suppress transcription and for the associated target mRNA to degrade.

Of particular interest, Atovaquone and Pyrimethamine exhibited reductions in viability and GFP expression at their lowest therapeutic doses, hinting at a potential synergistic interaction with GNE781. Future research endeavors could delve deeper into exploring additional dosages that might further potentiate synergy in terms of MYC expression and cytoselectivity. Additionally, it would be valuable to investigate the effects of these drug combinations on other types of cell lines, broadening our understanding of their potential applications.

References


Acknowledgements

• Dr. Benjamin Barwick and lab members
• Dr. David Alan Frank and lab members
• Emory University
• Alabama College of Osteopathic Medicine

Introduction

• Multiple myeloma is an incurable plasma cell malignancy, which occurs due to deregulation of various signaling pathways such as the NF-kB and JAK/STAT pathways (Nelson et al. 2011).
• In multiple myeloma, complex rearrangement results in an increase in the proximity of the MYC protein to super-enhancers, thus resulting in an elevation in MYC expression.
• Pharmacologically targeting super-enhancers is now being considered as a potential therapy for MM patients.
• EP300 is preferentially localized to myeloma super-enhancer sites and aberrant activation of STATs has been implicated in promoting tumor growth, survival, and immune invasion, therefore EP300 (GNE781) and STAT inhibitors (Atovaquone and Pyrimethamine) are the specific agents that were examined in this study.

Objective

The primary objective of this study is to explore the synergistic effects of the combination of EP300 and STAT3 inhibitors on MYC Expression and cellular viability.

Mean Fluorescent Intensity (MFI) Expression Results

GNE781 + AQ MFI Results

Day 1 Day 2 Day 3

GNE781 + PYR MFI Results

Day 1 Day 2 Day 3

Cell Viability Results

GNE781 + Atovaquone on Day 1

Cell Viability Synergy Score of GNE781-Atovaquone on Day 1

Cell Viability Synergy Score of GNE781-Atovaquone on Day 2

Cell Viability Synergy Score of GNE781-Atovaquone on Day 3

Mean Fluorescent Intensity (MFI) Expression Results

GNE781 + AQ MFI Results

Day 1 Day 2 Day 3

GNE781 + PYR MFI Results

Day 1 Day 2 Day 3