

Appropriate Screening for Vascular Disease

Robert M Schainfeld DO Associate Director, Vascular Medicine Massachusetts General Hospital Boston, MA

What is Peripheral Artery Disease?

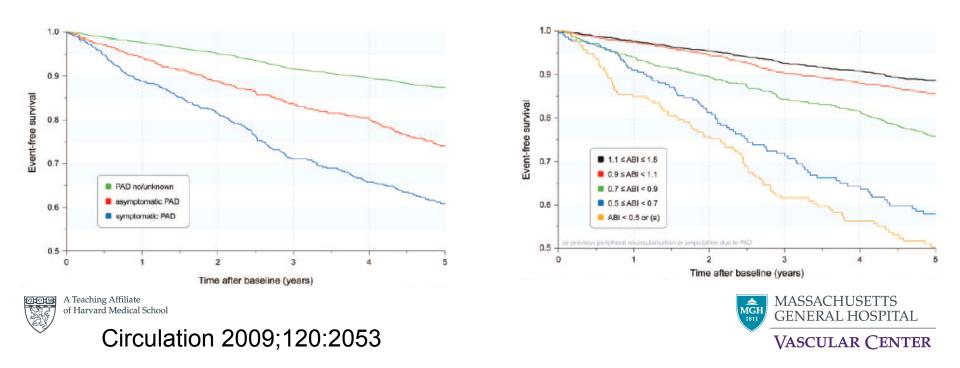
"Atherosclerosis is a progressive process affecting multiple vascular beds: its clinical consequences, which include coronary artery disease, cerebrovascular disease, and peripheral artery disease, are potentially life threatening."

A Teaching Affiliate of Harvard Medical School

Marso SP, Hiatt WR. J Am Coll Cardiol 2006;47:921-9

What is Peripheral Artery Disease?

PAD is arterial obstruction of the lower extremity arteries resulting in exertional limb discomfort or, in advanced cases, critical limb ischemia/CLI (rest pain, ulceration, gangrene)



A Teaching Affiliate of Harvard Medical School

Mortality and Vascular Morbidity in Older Adults With Asymptomatic Versus Symptomatic Peripheral Artery Disease

- 6880 patients <a>65 years of age followed for 5 years
 - 5392 patients without PAD
 - 836 asymptomatic with ABI < 0.9
 - 593 with symptomatic PAD

Historical Clues to the Diagnosis of Intermittent Claudication

Variable symptom complex described as: Pain Ache Tiredness Tightness Soreness Weakness Numbness

in legs, provoked by walking and relieved by rest

Is the Limb Pain Vascular?

Historical Clue	Vascular Etiology	Neurogenic Etiology		
Onset	Predictable	Variable		
Only With Walking?	Yes	No		
Relief With Stopping/Standing?	Yes	Variable		
Absent Pedal Pulses at Rest	Variable	Variable		

Differential Diagnosis of PAD

Intermittent Claudication

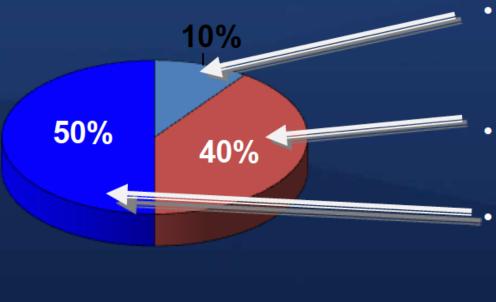
- Atherosclerosis
 - Stenotic
 - Embolic
- Non-Atherosclerotic
 - TAO/Buerger's
 - PAES
 - CAD of the Popliteal Artery
 - FMD
 - Vasculitis

Neurogenic Causes

- Lumbar Canal Stenosis
- Peripheral Neuropathy
- Venous Claudication

Musculoskeletal Causes

- Arthritis Bursitis Tendonitis Tight hamstring/ quadriceps musculature
- Podiatric Causes
 - Plantar Fasciitis Calcaneal Spurs



PAD Symptoms

Classic Claudication

Asymptomatic

Atypical Symptoms

- Only 8%–10% of patients with peripheral arterial disease (PAD) have "classic" claudication
- ~40% of patients with PAD have "atypical" leg symptoms

~50% of patients with PAD are asymptomatic with regard to the leg

A Teaching Affiliate of Harvard Medical School

Elevation Pallor/Dependent Rubor

of Harvard Medical School

What's Wrong Here?

E) (R) (TS)

IMPRESSION: Cortical irregularity and fragmentation surrounding the fifth MTP joint with adjacent soft tissue swelling, suspicious for septic arthritis.

ACC/AHA PAD Guidelines

Testing Strategies Based on Presentation

Clinical Presentation	Noninvasive Vascular Test
Asymptomatic lower extremity PAD	ABI
Claudication	ABI, PVR, or segmental pressures Duplex ultrasound Exercise test with ABI to assess functional status
Possible pseudoclaudication	Exercise test
Postoperative vein graft follow-up	Duplex ultrasound
Femoral pseudoaneurysm; iliac or popliteal aneurysm	Duplex ultrasound
Suspected aortic aneurysm; serial AAA follow-up	Abdominal ultrasound, CTA, or MRA
Candidate for revascularization	Duplex ultrasound, MRA, or CTA

of Harvard Medical School

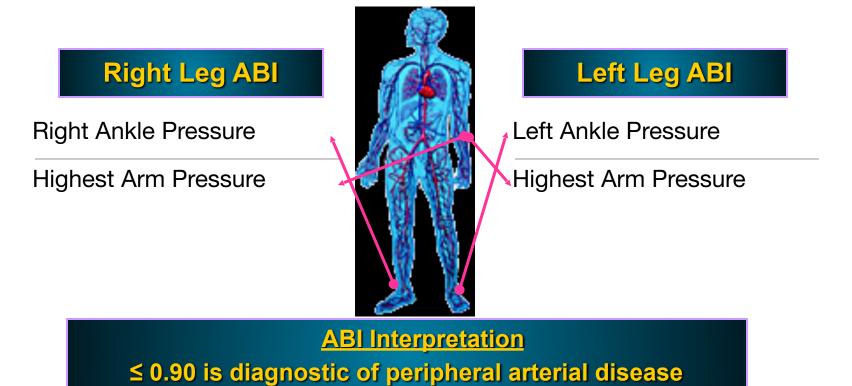
0:00:09

http://www.acc.org/clinical/guidelines/pad/index.pdf

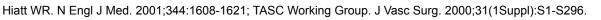
ARTERIAL TESTING

- Instrumentation
- Indirect Testing

Pressure Measurement (ABI, segmental, toe)

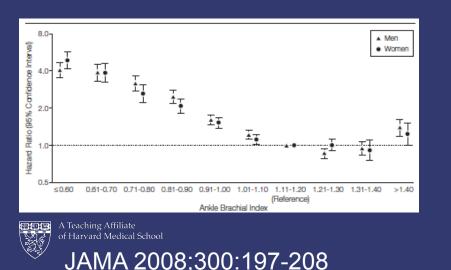

Treadmill exercise test

Plethysmography (PVR, digital)


 Duplex Scanning (Direct Testing) Carotid / Transcranial Doppler (TCD) Abdominal / Visceral (aortic, mesenteric, renal) Lower / upper extremity Special: bypass grafts, vascular masses, IVUS, EVAR

PAD is Defined by the ABI

- 1. For the left side, divide the left ankle pressure by the highest brachial pressure and record the result.
- 2. Repeat the steps for the right side.
- 3. Record the ABI's and place the results in the medical record.



Interpretation and Limitations of ABI

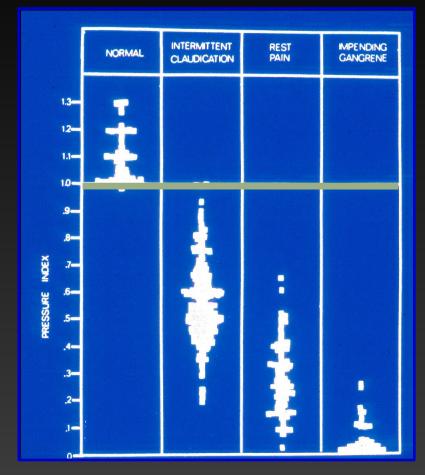
ABI Interpretation

- >1.30 Non-Compressible
- >1.0-1.30 Normal
- 0.91-1.00 Borderline
- 0.71-0.90 Mild PAD
- 0.41-0.70 Moderate PAD
- 0.00-0.40 Severe PAD

2 Main Limitations

 Calcified ankle vessels result in artificially "normal" ABI (DM, RF)

 Normal ABI in patient with Aortoiliac Disease only becomes abnormal with exercise testing


ABI vs. OTHER COMMON SCREENING TESTS

Diagnostic Test	Sensitivity, %	Specificity, %
Pap smear	30–87	86–100
Fecal occult blood test	37–78	87–98
Mammography	75–90	90–95
ABI	95	100

Adapted from Belch, JJ, et al. Arch Int Med. 2003;163:884-892

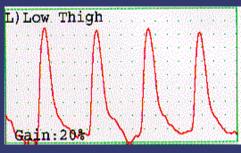
ANKLE / BRACHIAL INDEX (ABI)

- Normal1.11Claudication0.59Rest Pain0.26Impending Gangrene0.05
- Single Level Disease >0.5 >0.5 Multilevel Disease <0.5

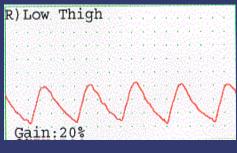
Next Tests in Evaluation of PAD...

- Segmental Limb Pressures
- Pulse Volume Recordings
- Doppler Waveforms
- Exercise Treadmill Testing

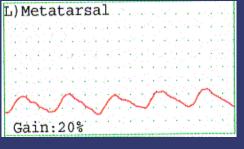
Patient Set Up



A Teaching Affiliate of Harvard Medical School

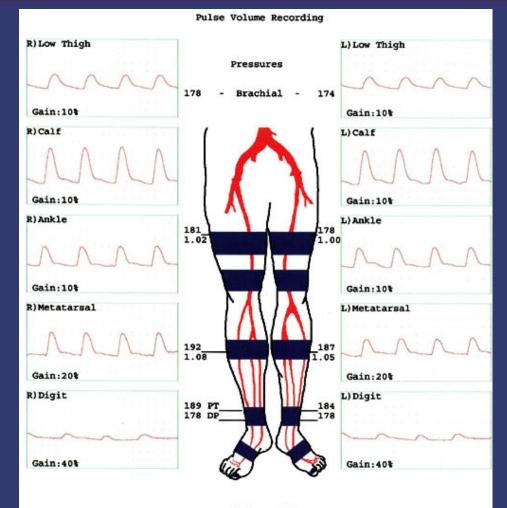


Pulse Volume Recordings (PVR)



Normal

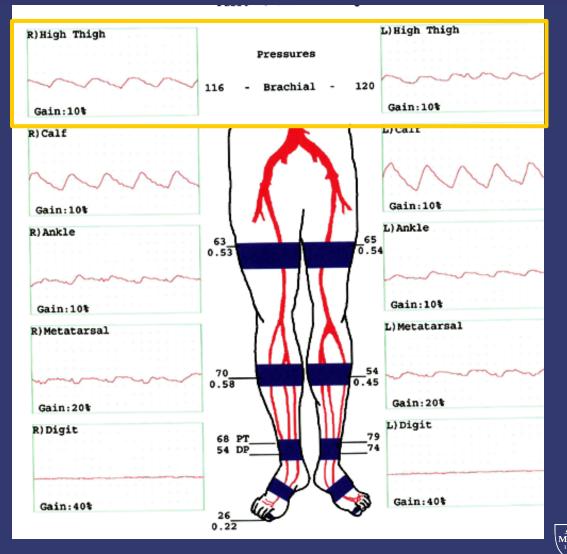
Moderate


Severe

Normal Lower Extremity Arterial Study

Augmentation of Calf PVR

1.06 -Ankle/Brachial- 1.03 Index



TREADMILL EXERCISE TEST

- Response of ankle systolic pressure to walking
- Confirm diagnosis of claudication
- Differentiate between claudication and other causes of leg pain
- Quantitate degree of physiologic abnormality

36 yo Female with Low Back and Bilateral Buttock Ache with Walking

Exercise Study

	Rest	1	2	3	4	5	6	7	8	9	1
Brachial BP R Ankle BP L Ankle BP	68	120 32 00			25						
R ABI L ABI		0.27 0.00			N/A						
	150										
	-	• • • •									
Systolic	100										
ressure	-		1								
mm/Hg) g	50		1.1.1.1								
		ъ.									
		1	1		· · · · ·						
0	,	-									
	Rest	1	2 3			56	-		8 9		D
= R Ankl		HEMIC	WINDOW	: 18		56	-	Time	(Min) 1 utes) ial BP	

Bilateral calf pain at 40 seconds Thigh pain at 50 minutes, L > R 2.0 mph 12% Seconds L calf tightening at 3:30 R calf tightening at 4:00

Critical Limb Ischemia

A Teaching Affiliate of Harvard Medical School

TOE/BRACHIAL INDEX (TBI)

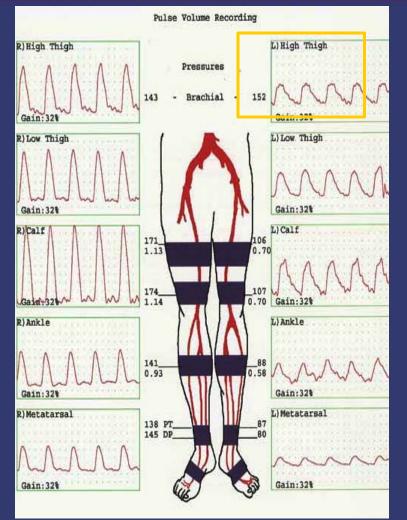
- Digital arteries remain compressible in diabetics
- Reliable measure of arterial disease severity in patients with diabetes
- Normal TBI ≥0.70

Absolute toe pressure <30 mmHg - rest pain

 Toe/foot lesions are unlikely to heal if the absolute toe pressure is <20-30 mmHg

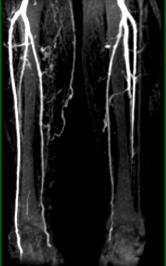
DUPLEX INSTRUMENTS

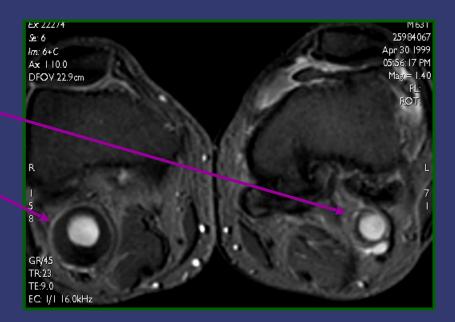
Arterial Duplex Ultrasound Testing — The "Non-Invasive Arteriogram"


- Reproducible, reliable, accurate
- Painless, risk-free, relatively inexpensive
- Predicts ideal access for intervention
- Direct visualization and characterization of arterial stenosis, occlusion, injury
- Excellent method to assess adequacy of revascularization over time

S/P Bilateral Iliac Stents: Recurrent Left Thigh Claudication

Left Common Iliac Artery




CHARTER A Teaching Affiliate of Harvard Medical School

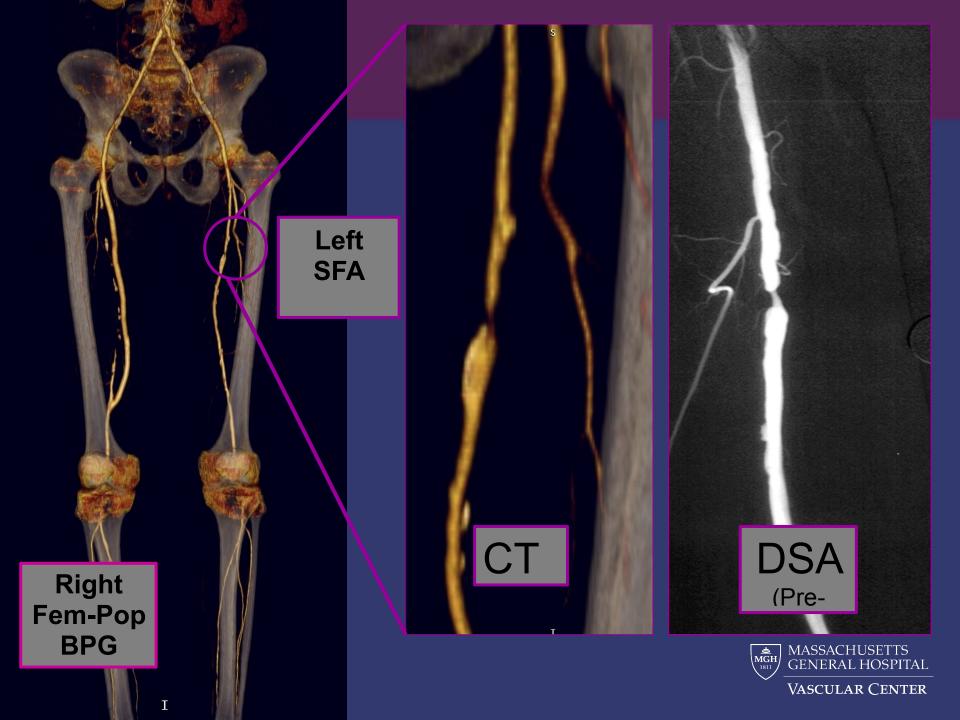
MRA in PAD

CTA in PAD

- 100% concordance for presence or absence of disease
- Scan times 48 66 secs
- Contrast volume 150cc at 3.5cc/sec
- Four-fold reduction in radiation exposure compared to angiography

Rubin G, et al. Radiology 2001; 221: 146 – 158.

CT Angiography



MASSACHUSETTS

GENERAL HOSPITAL

MGH

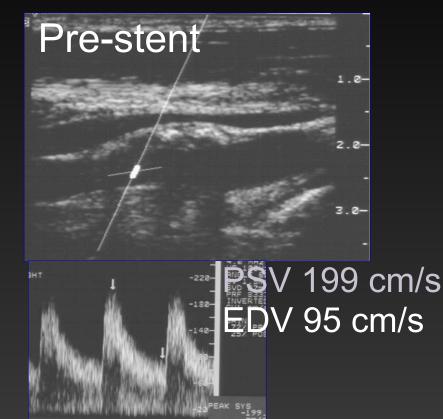
CAROTID DUPLEX

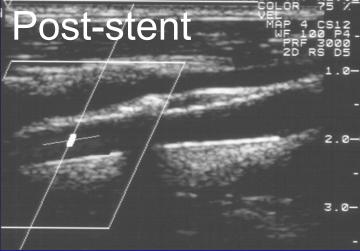
Clinical Applications

- Screening
- Asymptomatic bruit
- Hemispheric or ocular TIAs
- Stroke
- Intraoperative assessment

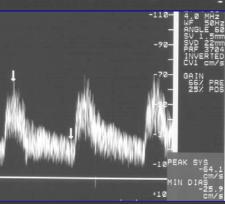
 Follow - up after carotid endarterectomy

CAROTID DUPLEX


Carotid Criteria Consensus Conference 2002

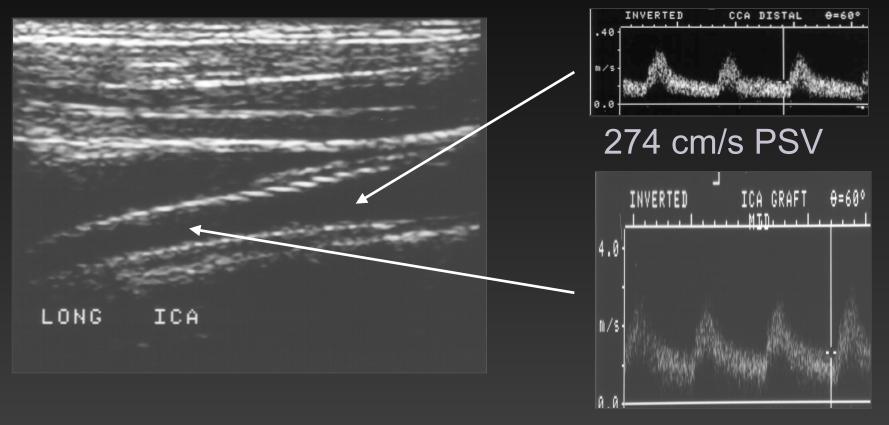

	Primary	Parameters	Additional Parameters			
Degree of Stenosis (%)	ICA PSV (cm/sec)	Plaque Estimate (%)*	ICA/CCA PSV Ratio	ICA EDV (cm/sec)		
Normal <50 50–69 ≥70 but less than near occlusion	<125 <125 125–230 >230	None <50 ≥50 ≥50	<2.0 <2.0 2.0_4.0 >4.0	<40 <40 40–100 >100		
Near occlusion	High, low, or undetectable	Visible	Variable	Variable		
Total occlusion	Undetectable	Visible, no detectable lumen	Not applicable	Not applicable		

Grant EG, et al. *Radiology* 2003; 229:340


CAROTID DUPLEX

Follow - up of Carotid Stents

PSV 64 cm/s EDV 25 cm/s



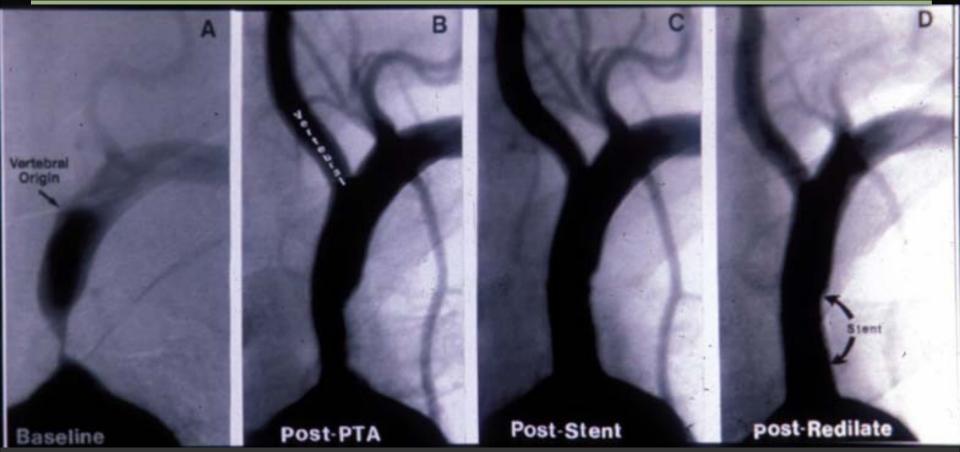
Contralateral Severe Disease or Occlusion

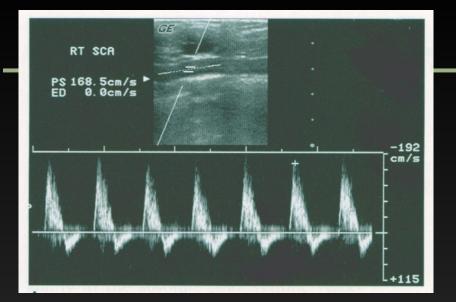
- Contralateral ICA velocities may be falsely elevated due to collaterals
- Correction factors:
 - subtract some velocity (20 cm/sec)
 - ICA / CCA ratio
 - downgrade 1 category

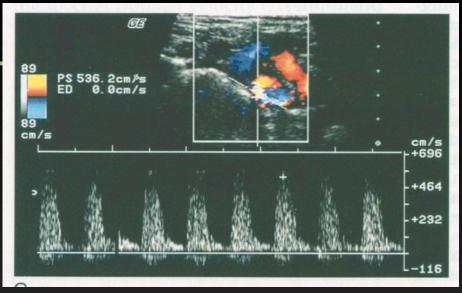
- recheck after revascularization or grade with CTA, MRA or angiography

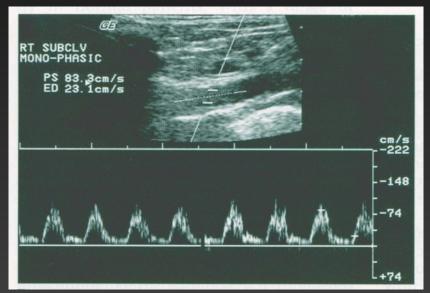
CAROTID DUPLEX Follow-up of Carotid Stents 50-79% Stenosis at 12 months? 32 cm/s PSV

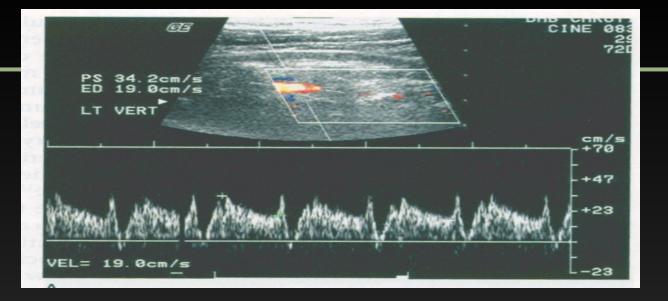
CAROTID DUPLEX

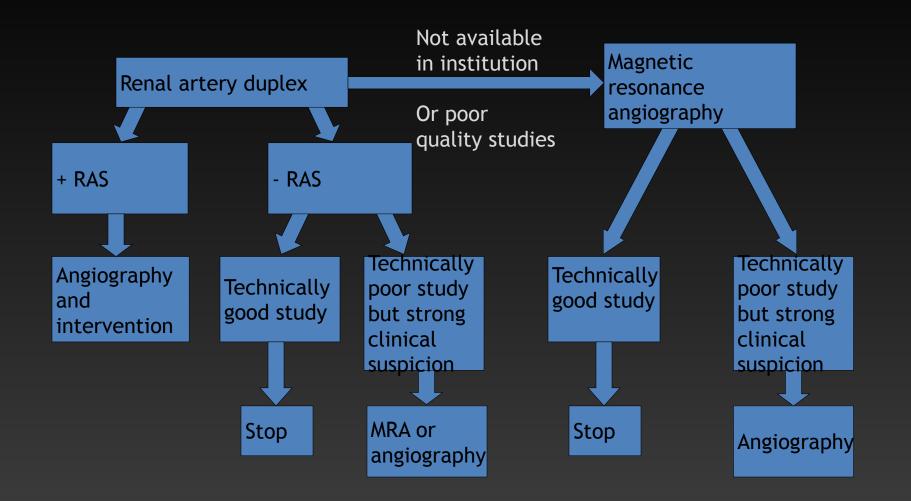

Follow-up of Carotid Stents


 Peak velocities appear to be higher in widely patent carotid stents than in native normal arteries


 Standard criteria may overestimate the degree of in - stent restenosis


 Specific criteria will be necessary for stented carotid arteries


Subclavian Steal Syndrome



Clinical Suspicion of Renal Artery Stenosis

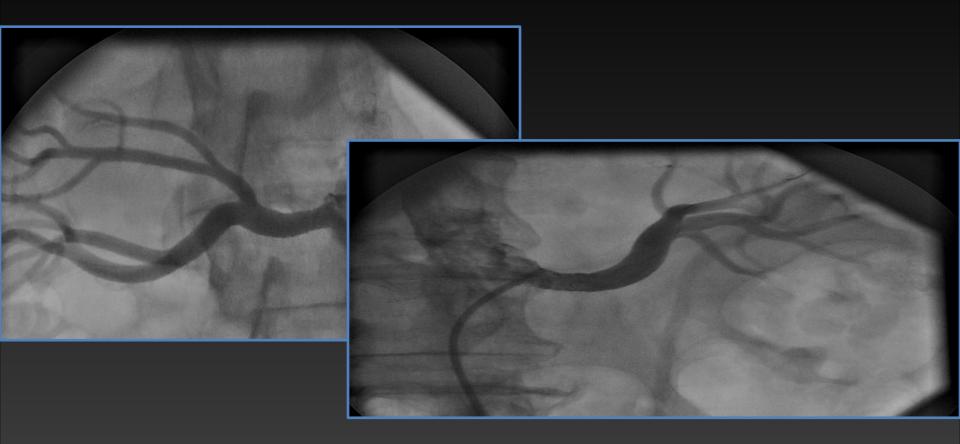
RENAL DUPLEX

Diagnostic Criteria For Native Renal Arteries

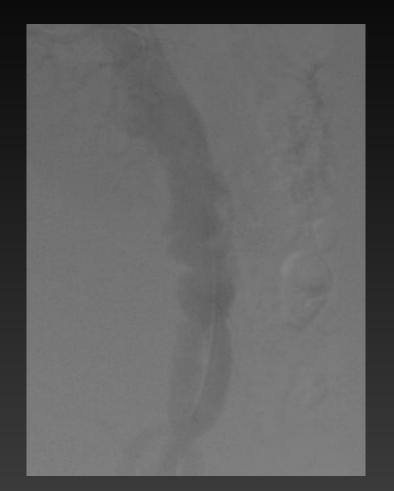
Renal Artery Diameter Reduction	Renal Artery PSV (cm/s)	RAR
Normal	< 180	< 3.5
< 60%	<u>></u> 180	< 3.5
≥60%	≥ 200	<u>></u> 3.5
(<u>>80%</u>)	(EDV <u>></u> 150)	
Occlusion	No signal	No signal

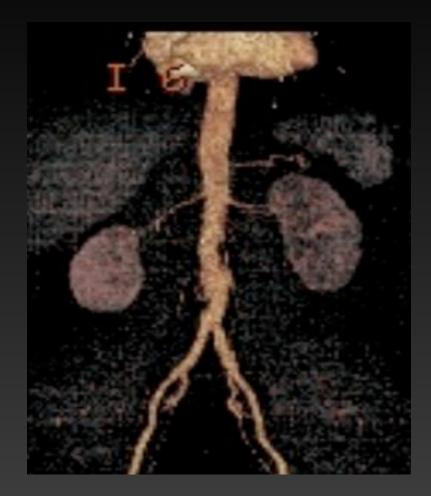
42 year old male with 6 Drug HTN

42 year old male with 6 Drug HTN


Contrast Angiography

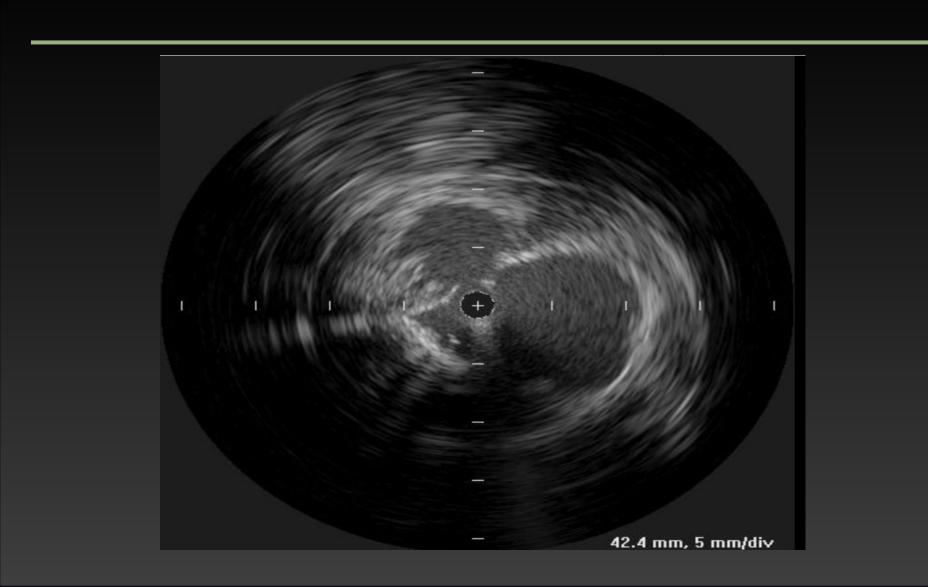
Contrast Angiography


Post - Intervention Angiography

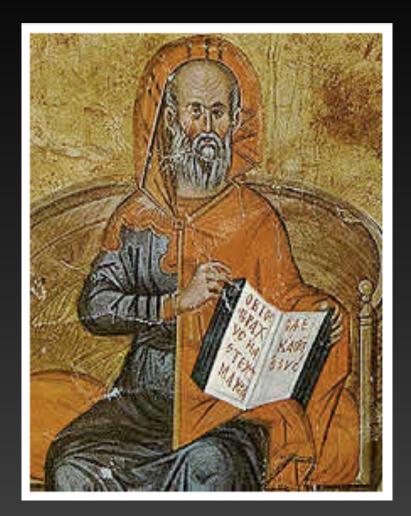

Contrast Abdominal Aortogram

Lateral Abdominal Aortogram

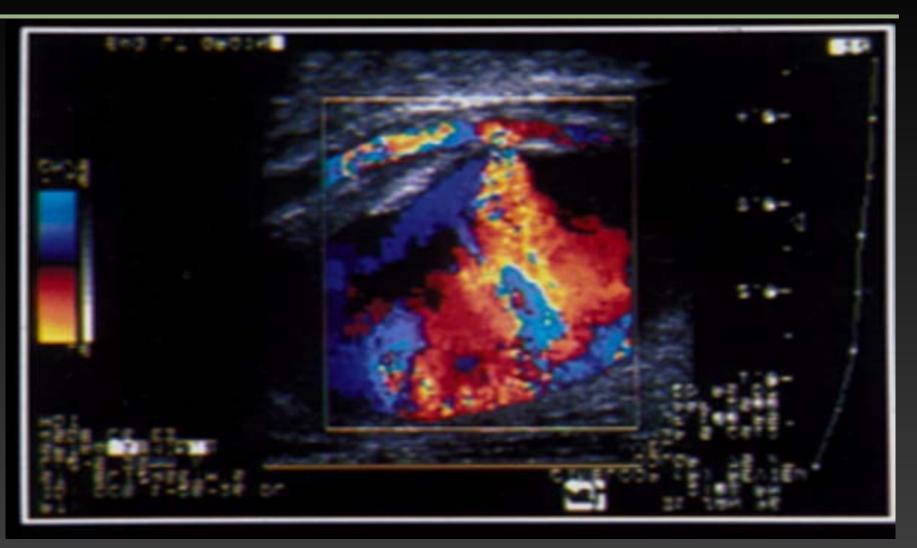
CTA Abdominal Aorta (3-D)



CT Abdominal Aorta



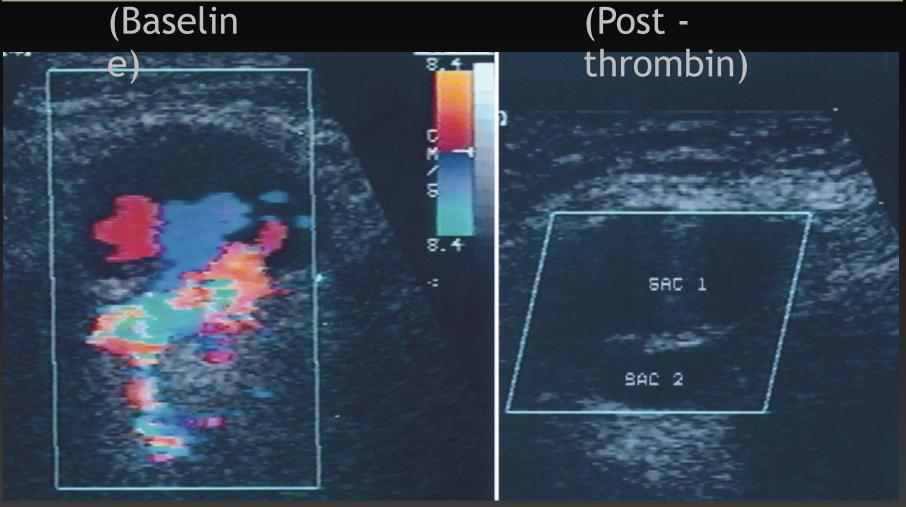
IVUS of Abdominal Aorta


"Hostile Aorta"

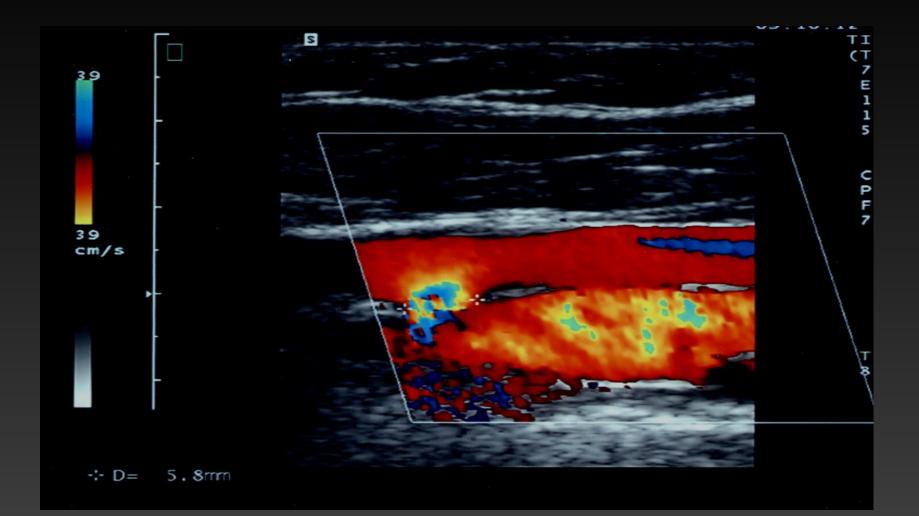
Pseudoaneurysms

- Relationship of aneurysm to site of needle or catheter
- Size of aneurysm
- Occluded?
- Candidacy for thrombin injection or UGC

Pulsatile Mass in Groin



Pulsatile Mass in Groin


Pseudoaneurysm

(Baselin

"Chief, I Hit the Blood Vessel"

"Boston's Grand Prix"

Question # 1

A 21-year-old lobster fisherman from Maine, presented to the emergency room with a 3 day history of left arm/hand swelling and discomfort, without any obvious antecedent trauma. Duplex ultrasonography of his venous system confirms acute thrombosis of the axillo-subclavian veins extending into the basilic vein. What would be the **most** appropriate management strategy to optimize a favorable clinical outcome?

a. Commencement of anticoagulation with either low molecular weight or unfractionated heparin with concomitant warfarin.

b. Systemic thrombolysis via peripheral intravenous line.

c. Catheter-directed thrombolysis via basilic vein followed by PTA/stenting of residual subclavian vein stenosis.

d. Catheter-directed thrombolysis followed by surgical decompression (1st rib resection) after restoring patency of veins.

e. Anticoagulate for 3-months followed by 1st rib resection of persistently thrombosed axillo-subclavian veins.

Correct Answer: c

Paget-Schroetter syndrome or effort-induced thrombosis may be associated with longterm morbidity due to genesis of post-thrombotic syndrome (PTS), especially in young athletic/vocationally active individuals when it involves the dependent limb. Thus, expeditious diagnosis and recanalization of the vein is of paramount importance. Catheter-directed thrombolysis followed by prompt surgical first-rib resection would be the best strategy to obviate the potential complication of PTS. Anticoagulation alone would not ensure patency of occluded vein and thus, the patient might be plagued with a chronically edematous limb. The same argument holds true with resecting rib after three months, without initially restoring patency of vein. There is no role for systemic thrombolysis in venous disease; it must be catheter-directed to facilitate a favorable outcome.

Question # 2

Which of the following patients are suitable candidates for catheter-directed thrombolysis (CDT)?

- a. Submassive PE and unstable with patent foramen ovale on echocardiogram
- b. Massive PE who are stable after lysis
- c. Submassive PE and poor prognosis
- d. Submassive PE with minor RV dysfunction, myocardial necrosis, and stable

Correct Answer c.

Presence of PFO is a contraindication for CDT, open embolectomy with PFO repair is the treatment. Massive PE who are unstable after lysis would benefit from CDT. Stable submassive PE patients do not warrant CDT, unless clinical deterioration or instability.

Question # 3

A 23 year-old pitcher presents with a 3 day history of acute right arm pain, associated with cool/blue digits, pallor of hand, and absent brachial/radial and ulnar pulses. The initial therapeutic intervention appropriate to commence is?

- Anticoagulation with LMWH and concomitant oral AC
- Anticoagulation with direct oral agent.
- Catheter-directed thrombolysis followed by angioplasty and stenting
- Anticoagulation with either LMWH or UFH

Correct Answer d.

Question # 1

A 21-year-old lobster fisherman from Maine, presented to the emergency room with a 3 day history of left arm/hand swelling and discomfort, without any obvious antecedent trauma. Duplex ultrasonography of his venous system confirms acute thrombosis of the axillo-subclavian veins extending into the basilic vein. What would be the **most** appropriate management strategy to optimize a favorable clinical outcome?

a. Commencement of anticoagulation with either low molecular weight or unfractionated heparin with concomitant warfarin.

b. Systemic thrombolysis via peripheral intravenous line.

c. Catheter-directed thrombolysis via basilic vein followed by PTA/stenting of residual subclavian vein stenosis.

d. Catheter-directed thrombolysis followed by surgical decompression (1st rib resection) after restoring patency of veins.

e. Anticoagulate for 3-months followed by 1st rib resection of persistently thrombosed axillo-subclavian veins.

Correct Answer: c

Paget-Schroetter syndrome or effort-induced thrombosis may be associated with longterm morbidity due to genesis of post-thrombotic syndrome (PTS), especially in young athletic/vocationally active individuals when it involves the dependent limb. Thus, expeditious diagnosis and recanalization of the vein is of paramount importance. Catheter-directed thrombolysis followed by prompt surgical first-rib resection would be the best strategy to obviate the potential complication of PTS. Anticoagulation alone would not ensure patency of occluded vein and thus, the patient might be plagued with a chronically edematous limb. The same argument holds true with resecting rib after three months, without initially restoring patency of vein. There is no role for systemic thrombolysis in venous disease; it must be catheter-directed to facilitate a favorable outcome.

Question # 2

Which of the following patients are suitable candidates for catheter-directed thrombolysis (CDT)?

- a. Submassive PE and unstable with patent foramen ovale on echocardiogram
- b. Massive PE who are stable after lysis
- c. Submassive PE and poor prognosis
- d. Submassive PE with minor RV dysfunction, myocardial necrosis, and stable