Clinical Outcome Trials and Side Effects of Type 2 Diabetes Agents

Jeffrey S. Freeman DO FACOI
Professor of Internal Medicine
Chairman Division of Endocrinology and Metabolism
Philadelphia College of Osteopathic Medicine

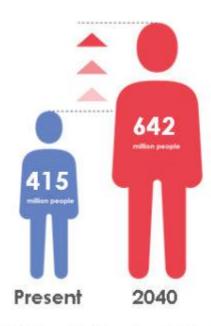
Outline

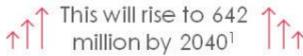
- Are there adverse safety signals for diabetic agents?
- Define cardiovascular risks for diabetes
- Determine when a CVD outcome trial is to be performed
- Define clinical outcome trials
- Depth of outcome trials
- Significance of the Empa Reg and Leader trials

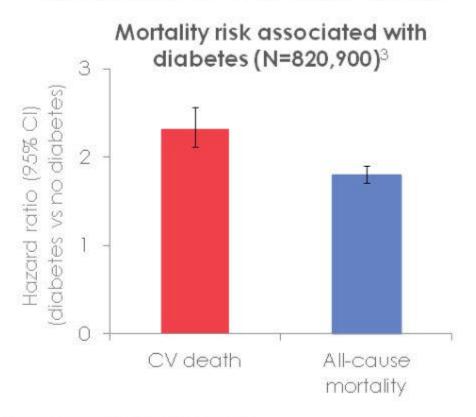
Defining the risks of overtreatment

- Hypoglycemia
 - ? Adrenergic overdrive (unproven)
 - ? Causal pathway for mortality or macrovascular events (unproven)
- Off-target effects of therapeutic choices
 - Cardiovascular morbidity?
 - Fractures?
 - Cancer?
 - Pancreatitis? Pancreatic cancer?

SAFETY ISSUES


- Incretins: Pancreatic safety, CHF
- DPP-4 Inhibitors: polyarthralgias
- SGLT-2 Inhibitors: bone density, pyelonephritis, euglycemic DKA

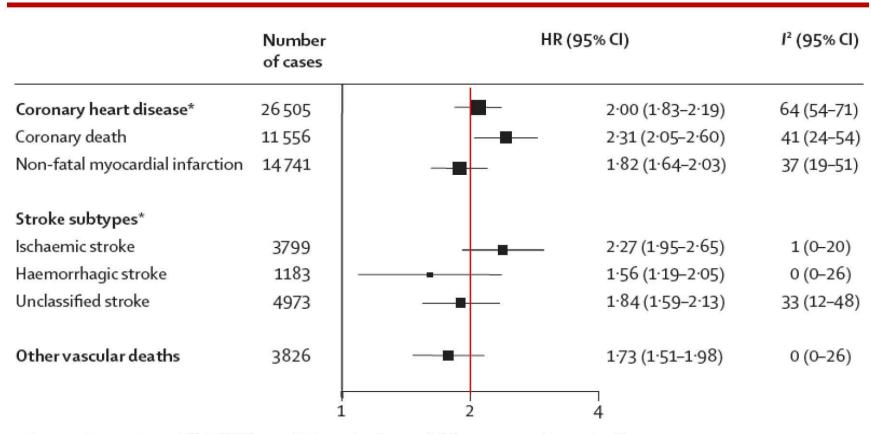

Why CARDIOVASCULAR OUTCOME (CVOT) TRIALS?


- What are they?
- What do we gain from them?

Type 2 diabetes is increasingly prevalent

 Globally, 415 million people are living with diabetes¹ At least 68% of people >65 years with diabetes die of heart disease²

IDF Diabetes Atlas 7th Edition 2015 http://www.idf.org/diabetesatlas;
 Centers for Disease Control and Prevention 2011 https://www.cdc.gov/diabetes/pubs/pdf/ndfs 2011,pdf;
 Seshasai et al. N Engl J Med 2011;364:829-41.



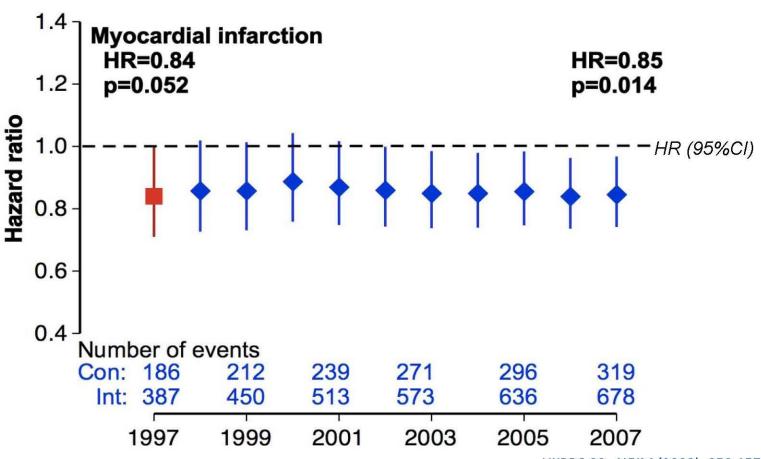
Association of A1C With CVD Outcomes in Subjects With No Baseline Diabetes or CVD History

Over 9.9 yrs median follow up:

- 20,840 fatal and nonfatal CVD outcomes (13,237 CHD; 7,603 stroke)
 in 294,998 subjects
- J-shaped associations seen between all glycemic measures (A1C and fasting, random, postload glucose) and CVD risk after adjustment for conventional CVD risk factors*
 - Slight change in HRs seen after adjustment for total cholesterol, triglycerides or eGFR; change attenuated after adjustment for HDL-C or C-reactive protein

Cardiovascular risk in diabetes

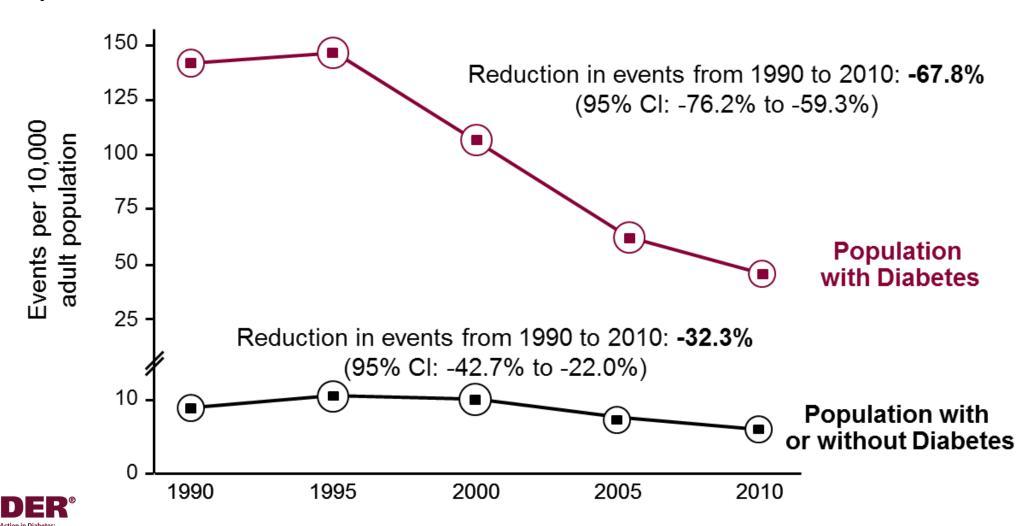
Analyses based on 530,083 participants from 102 prospective studies.


HRs adjusted for age, smoking status, body-mass index and systolic blood pressure, and, where appropriate, stratified by sex and trial arm.

Emerging Risk Factors Collaboration. Lancet 2010; 375: 2215-22

UKPDS-PTM: Myocardial Infarction Hazard Ratio

(fatal or non-fatal myocardial infarction or sudden death)


Intensive (SU/Ins) vs. Conventional glucose control

UKPDS 80. NEJM (2008); 359:1577-1589

Diabetes-related complications in the USA, 1990-2010

Acute myocardial infarction

Cardiovascular effects of incretin therapies

GLP-1 analogues

- SBP reduced 2-4 mmHg
- Weight loss
- ~5% total cholesterol, LDL reduction
- Reductions in CRP, BNP

DPP-4 Inhibitors

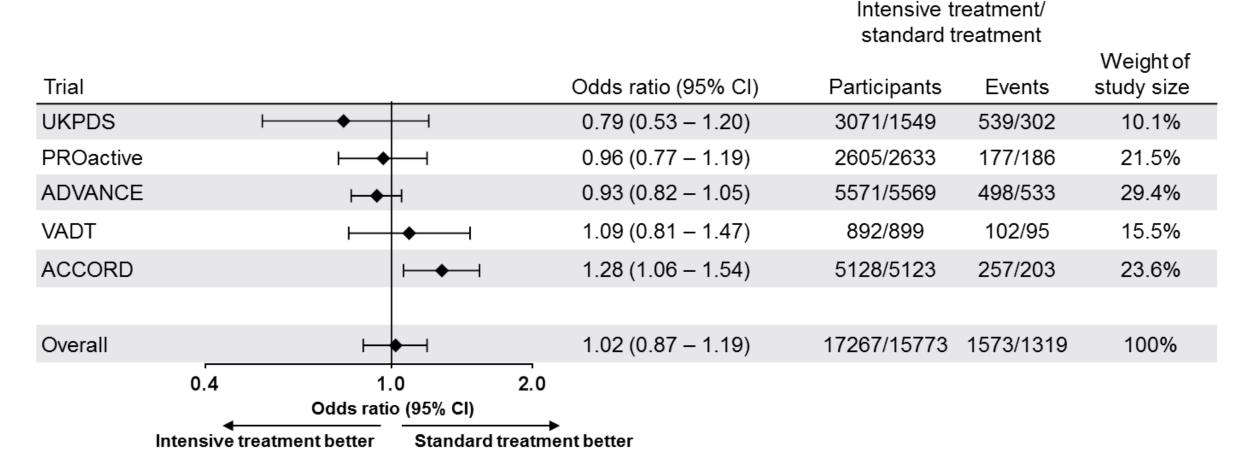
- SBP reduced 2-3 mmHg
- Weight neutral
- Small reductions in LDL (inconsistent finding)

Reducing risk for complications

- Microvascular
 - Glucose
 - Blood pressure (esp retinopathy, nephropathy)
 - Lipids
 - Smoking cessation
- Macrovascular
 - Blood pressure
 - Lipids
 - Antiplatelet agents
 - Smoking cessation
 - Glucose?

Global distribution of participants

Study	US/Canada	WE	EE	Middle East	Africa	Australasia	LatinAmerica
			P	re-FDA Guidance			
ADVANCE	X		X			X	
Proactive		Χ	Х				
HEART2D	X	X	X	Χ	X		
SPREADDIMCAD						Χ	
Aleglitazar(term.)							
Acarbose						Χ	
Phantom	X						
RECORD		Χ	Χ			Χ	
			P	ost-FDA Guidance			
TOSCA-IT		X					
TECOS	X	X	X	X	X	X	X
ACE						X	
EXAMINE	Χ	Χ	Х	X	X	X	X
TIDE	X	X	X	X	X	Χ	X
SAVOR-TIMI53	Χ	Χ	Х	X	X	Χ	X
EXSCEL	X	X	X	Χ		X	X
ELIXA	Χ	X	Х	X	X	X	Χ
LEADER	X	Χ	X	Χ	Χ	Χ	X
CAROLINA	X	X	Χ	X	Χ	Χ	X
Taspog	X	X	X	Χ	X	Χ	X
CANVAS	Χ	Χ	Х	Х		X	X
BI10773	X	X	X	Χ	X	Χ	X
AAA						Χ	
RASCIN	Χ						
ALECARDIO	Χ	Χ	Х	Χ		X	Χ


Cardiovascular risk in type 2 diabetes: Summary of randomized trials

	Cardiovascular events	Mortality
Intensive vs less intensive glycen	nic control ¹	
ACCORD	←→	Ť
ADVANCE	←→	←→
UKPDS	←	← →
VADT	←→	←→
Individual glucose-lowering drug	yvs placebo (since 2008 FDA guidance)	
ELIXA ²		← →
EXAMINE ³	←→	← →
SAVOR4		←→
TECOS ⁵	←→	←→
EMPA-REGIOUTCOME ⁶	↓	↓
LEADER ⁷	†	1

^{1.} Bergenstal RM et al. Am J Med 2010;123:374.e18; 2. Pfeffer MA et al. N Engl J Med 2015;373:2247-57; 3. White WB et al. N Engl J Med 2013;369:1327-35; 4. Scirica BM et al. N Engl J Med 2013;369:1317-26; 5. Green JB et al. N Engl J Med 2015;373:232-42; 6. Zinman B et al. N Engl J Med 2015;373:2117-28; 7. Marso SP et al. N Engl J Med 2016; epub ahead of print.

All Cause Mortality

Intensive vs Standard Glucose Lowering

CI: confidence interval; HR: hazard ratio.

Outline

- Define clinical outcome trials
- Define cardiovascular risks for diabetes
- Determine when a CVD outcome trial is to be performed
- Depth of outcome trials
- Are there adverse safety signals for diabetic agents?
- Significance of the Empa Reg and Leader trials

FDA guidance: confidence intervals for meta-analysis

Upper bound of a 2-sided 95% confidence interval for estimated CV risk				
>1.8	The data are inadequate to support approval. A large safety trial should be conducted			
1.3 – 1.8	The potential for CV harm may still exist. An adequately powered and designed postmarketing trial is necessary to show an upper bound < 1.3*			
<1.3	A post-marketing trial is generally not needed*			
*with a reassuring point estimate for overall CV risk				

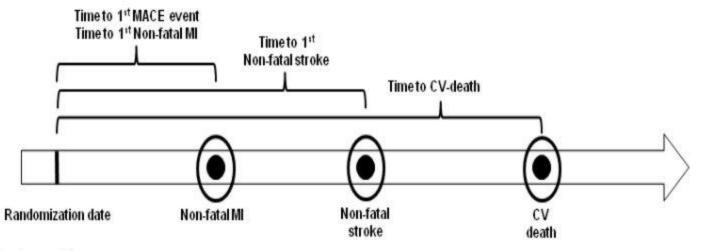
What is MACE?

- "Major Adverse Cardiac Events"
- Three point MACE all cause mortality, non fatal MI, non fatal stroke.
- Four point MACE adds hospitalization for CHF or angina.

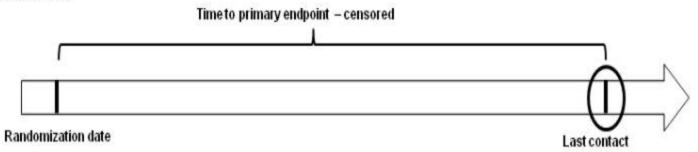
Overview of ongoing CV outcomes trials in diabetes

Drug class	Existing evidence	Outcomes trials	Number of patients
Metformin	UKPDS, meta-analysis suggests benefit	?	?
Glitazones/Glitazars	Meta-analysis suggests increased risk of CV morbidity for some	TOSCA-IT ALECARDIO	>11,000
DPP-4 inhibitor	Favorable effects on CV risk factors	EXAMINE TECOS SAVOR CAROLINA	>35,000
GLP-1 analogue	Favorable effects on CV risk factors	ELIXA EXSCEL LEADER REWIND	>33,000
SGLT-2 inhibitor	Favorable effects on CV surrogate markers	BI 10773 CANVAS	>8500

CV outcome trials in type-2 diabetes mellitus: GLP-1 analogues


Trial	Treatment	Inclusion criteria	Primary endpoint	Number of patients
ELIXA	Placebo Lixisenatide	T2DM HbA1c 6.0% - 10.0% ACS	CV death, MI, UA or stroke	6000
EXSCEL	Placebo Exenatide	T2DM HbA1c 7.0% - 10.0% CVD in 60%	CV death, MI or stroke	9500
LEADER	Placebo Liraglutide	T2DM HbA1c ≥ 7.0% ≥50 years + CVD ≥60 years + CV risk factors	CV death, MI or stroke	8754
REWIND	Placebo Dulaglutide Add-on: 2 oral agents +/- GLP-1 analogue/insulin	T2DM ≥50 years + CVD ≥55 years + subclinical CVD ≥60 years + CV risk factors HbA1c ≤9.5%	CV death, MI or stroke	9600

CV Outcome Trials in type-2 diabetes mellitus: DPP4 Inhibitors ("Gliptins")


Trial	Treatment	Inclusion criteria	Primary endpoint	Number of patients
EXAMINE	Placebo Alogliptin	T2DM HbA1c 6.5 − 11.0% ≥ 18 years ACS	CV death, MI or stroke	5400
TECOS	Placebo Sitagliptin	T2DM HbA1c 6.5 — 8.0% ≥ 50 years CVD	CV death, MI, UA or stroke	14000
SAVOR (TIMI-53)	Placebo Saxagliptin	T2DM HbA1c ≥ 6.5% ≥ 40 years CVD/CV risk factors	CV death, MI or stroke	12000
CAROLINA	Glimepiride Linagliptin	T2DM HbA1c 6.5-8.5% 40-85 years CVD/CV risk factors/ diabetes end organ damage	CV death, MI, UA or stroke	6000

Analyses of MACE and time to first event

Patient with events

Patient without event

Confirmatory statistical analysis

Primary statistical analysis

Cox proportional hazard model with treatment as a covariate

Test hierarchy for the primary outcome

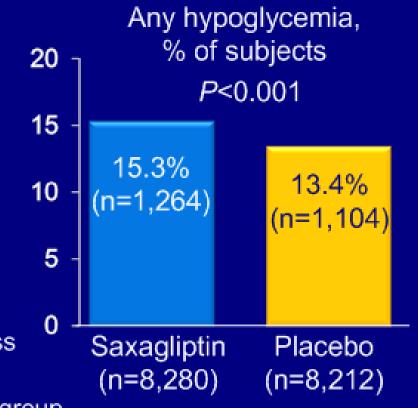
1. Test of non-inferiority

- Confirmed if upper bound of the 2-sided 95% CI of the hazard ratio is below 1.30
- 2. Test of superiority
- Confirmed if upper bound of the 2-sided 95% CI of the hazard ratio is below 1.00

Primary outcome

Time to first MACE composed of:

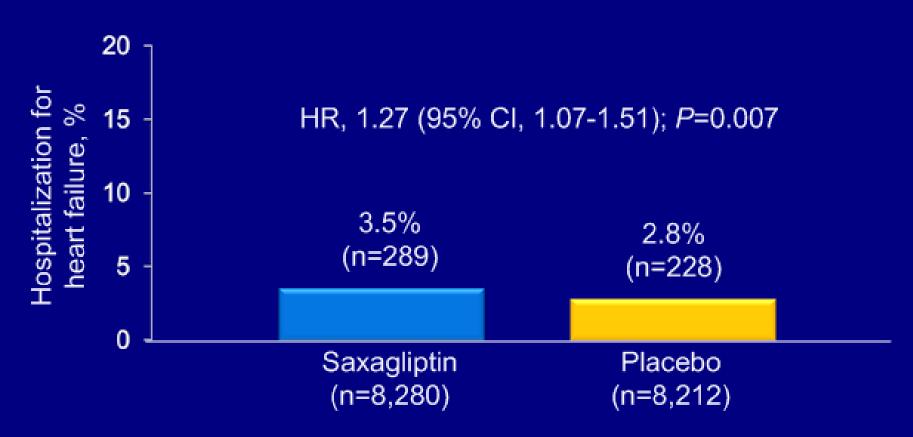
- CV death
- Non-fatal MI
- Non-fatal stroke



Savor Trial (Saxagliptin)

SAVOR-TIMI 53: Safety Endpoints

- More hypoglycemia with saxagliptin
- Similar rates in both groups
 - Pancreatitis
 - Thrombocytopenia
 - Lymphocytopenia
 - Infections
 - Hypersensitivity/skin reactions
 - Bone fractures
 - Liver abnormalities
- Cancer rate similar between groups; no excess of pancreatic cancer with saxagliptin
 - 12 cases of pancreatic cancer in placebo group
 vs 5 cases in saxagliptin group; P=0.095



Saxagliptin is not FDA approved for cardiovascular risk reduction.

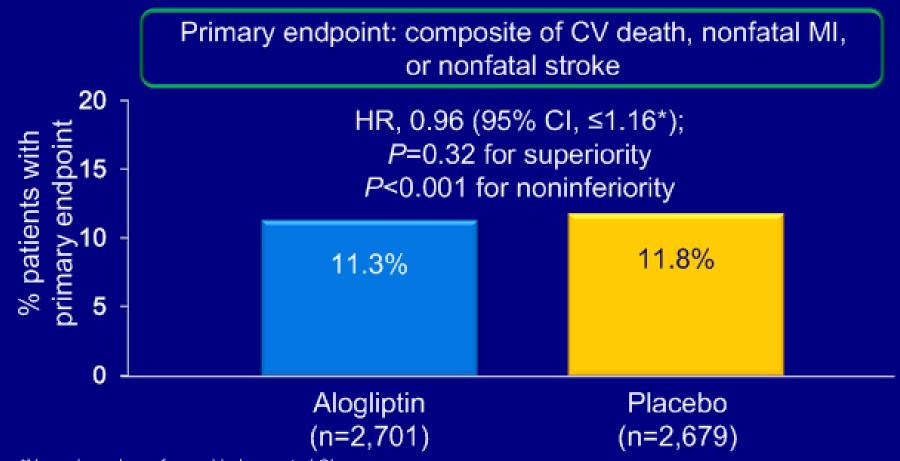
SAVOR-TIMI 53=Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—Thrombolysis in Myocardial Infarction 53

SAVOR-TIMI 53: Saxagliptin Increased Hospitalization for Heart Failure

Saxagliptin is not FDA approved for cardiovascular risk reduction.

SAVOR-TIMI 53=Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—Thrombolysis in Myocardial Infarction 53

Pancreatitis and Pancreatic Cancer With Saxagliptin or Placebo in Patients With or At Risk for CVD in SAVOR-TIMI 53


- Results from SAVOR-TIMI 531
 - Similar rates of pancreatitis in saxagliptin and placebo groups
 - No excess of pancreatic cancer with saxagliptin
- Current SAVOR-TIMI 53 analysis determined incidence of pancreatitis and pancreatic cancer
 - Pancreatitis history not a contraindication for trial participation
- Reported cases classified as definite acute pancreatitis, possible acute pancreatitis, chronic pancreatitis, unlikely to be pancreatitis
- Outcome measures: total number of adjudicated pancreatitis cases and reported pancreatic cancer cases

SAVOR-TIMI 53=Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—Thrombolysis in Myocardial Infarction 53

EXAMINE (Alogliptin)

EXAMINE: No Increase in CV Events with Alogliptin Primary Endpoint

*Upper boundary of one-sided repeated CI

Median follow-up: 18 months

Alogliptin is not FDA approved for cardiovascular risk reduction.

EXAMINE=Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care

CV=cardiovascular: MI=myocardial infarction

EXAMINE: Adverse Events

- No significant between-group difference in occurrence of serious adverse events
 - 33.6% with alogliptin, 35.5% with placebo (P=0.14)
- Similar rates for:
 - Hypoglycemia
 - Acute and chronic pancreatitis (no fatal cases)
 - Changes in eGFR and dialysis initiation
- No significant between-group difference in cancer incidence
 - No reports of pancreatic cancer

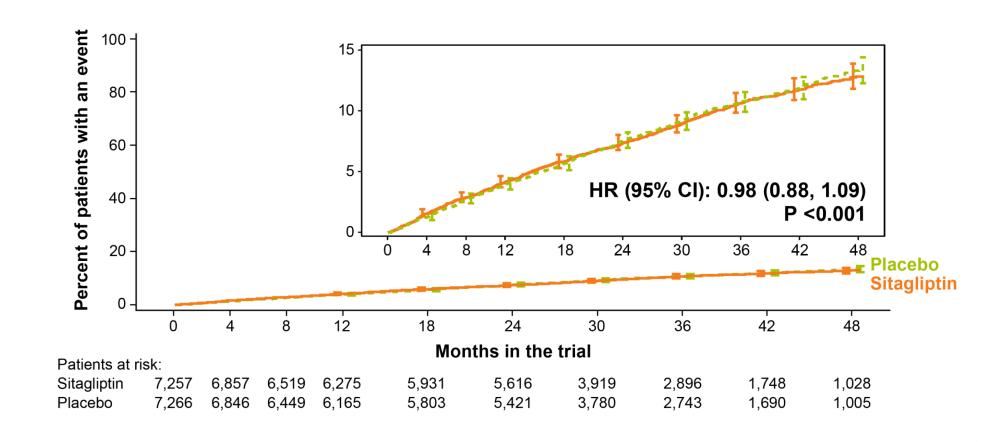
Primary Results

8th June 2015

Primary Composite Cardiovascular Outcome

Time to first occurrence of:

- Cardiovascular-related death
- Nonfatal myocardial infarction
- Nonfatal stroke
- Hospitalization for unstable angina

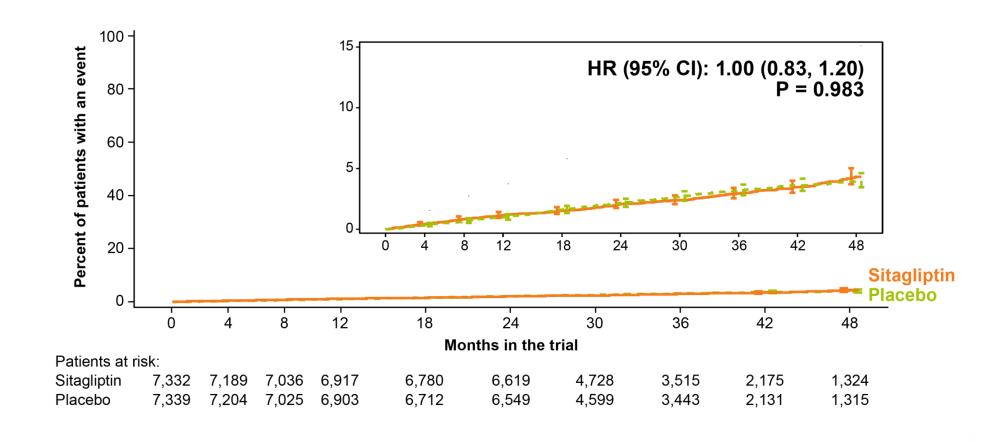

A Clinical Endpoints Committee, blinded to therapy allocation, reviewed all potential CVD endpoints independently.

Major Inclusion Criteria

- Type 2 diabetes (A1c ≥6.5% and ≤8.0%)
 - Stable monotherapy OR dual combination therapy with metformin, pioglitazone, or sulfonylurea or *stable
 dose of insulin with or without metformin
- ≥50 years old
- Preexisting vascular disease defined as having:
 - History of myocardial infarction
 - Prior coronary revascularization
 - Coronary angiography with at least one ≥50% stenosis
 - History of ischemic stroke
 - Carotid arterial disease with ≥50% carotid stenosis
 - Peripheral arterial disease with objective evidence
- Able to see usual care provider at least twice yearly

Primary Composite Cardiovascular Outcome*

PP Analysis for Non-inferiority



^{*} CV death, nonfatal MI, nonfatal stroke, hospitalization for unstable angina

Green JB et al. NEJM 2015; DOI: 10.1056/NEJMoa1501352

Hospitalization for Heart Failure*

ITT Analysis

^{*} Adjusted for history of heart failure at baseline

Green JB et al. NEJM 2015; DOI: 10.1056/NEJMoa1501352

Summary of Results (1)

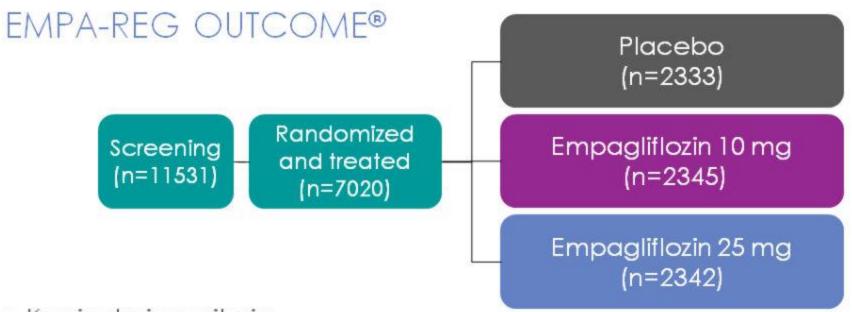
- For the primary composite cardiovascular outcome
 (CV death, nonfatal MI, nonfatal stroke, or hospitalization for unstable angina) sitagliptin, compared with placebo, was noninferior, and not superior
- For the secondary composite cardiovascular outcome
 (CV death, nonfatal MI, or nonfatal stroke) sitagliptin, compared with placebo, was noninferior, and not superior
- The rate of hospitalization for heart failure did not differ between sitagliptin and placebo treatment groups
- The incidence of severe hypoglycemia did not differ between sitagliptin and placebo treatment groups

Summary of Results (2)

- The rates of infections, and deaths from infection, did not differ between sitagliptin and placebo treatment groups
- The incidence of *overall malignancies* did not differ between sitagliptin and placebo treatment groups
- Overall, confirmed events of acute pancreatitis
 were uncommon, but numerically more frequent
 in the sitagliptin group
- Overall, confirmed events of pancreatic cancer were uncommon, but numerically more frequent in the placebo group

Outline

- Define clinical outcome trials
- Define cardiovascular risks for diabetes
- Determine when a CVD outcome trial is to be performed
- Depth of outcome trials
- Are there adverse safety signals for diabetic agents?
- Significance of the Empa Reg and Leader trials


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman, M.D., Christoph Wanner, M.D., John M. Lachin, Sc.D.,
David Fitchett, M.D., Erich Bluhmki, Ph.D., Stefan Hantel, Ph.D.,
Michaela Mattheus, Dipl. Biomath., Theresa Devins, Dr.P.H.,
Odd Erik Johansen, M.D., Ph.D., Hans J. Woerle, M.D., Uli C. Broedl, M.D.,
and Silvio E. Inzucchi, M.D., for the EMPA-REG OUTCOME Investigators

- Key inclusion criteria
 - Adults with type 2 diabetes and established cardiovascular disease
 - At baseline, 75.6% of patients had coronary artery disease, 23.3% had a history of stroke, 20.8% had peripheral artery disease, 10.1% had heart failure*
 - BMI≤45 kg/m²; HbA1c 7-10%; eGFR≥30 mL/min/1.73m² (MDRD)
- Study medication was given in addition to standard of care

^{*}Based on narrowstandardized MedDRA query (SMQ) "cardiac failure".

eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal Disease.

Zinman B et al. N Engl J Med 2015;373:2117-28.

CV risk factor management at baseline

Glycemic management	HbA1c,%	8.07 ± 0.85
	Any metformin	74.0%
	Any insulin	48.2%
Blood pressure management	SBP/DBP, mmHg	136/77
	SBP <140 and DBP <90 mmHg	61.3%
	Any BP-lowering drug	95.0%
	ACE inhibitor/ARB	80.7%
Lipid management	LDL-cholesterol, mg/dL	85.6 ± 35.7
	Statin	77.0%
Anti-platelet therapies	Acetylsalicylic acid	82.7%

Data are mean ± SD or% in 7020 patients treated with ≥1 dose of study drug.

EMPA-REG OUTCOME: Design and Baseline Characteristics

- CVOT for the SGLT2 inhibitor, empagliflozin
- 7,020 subjects with type 2 diabetes at high CV risk on standard care randomized to:

Empagliflozin 10 mg • Empagliflozin 25 mg • Placebo

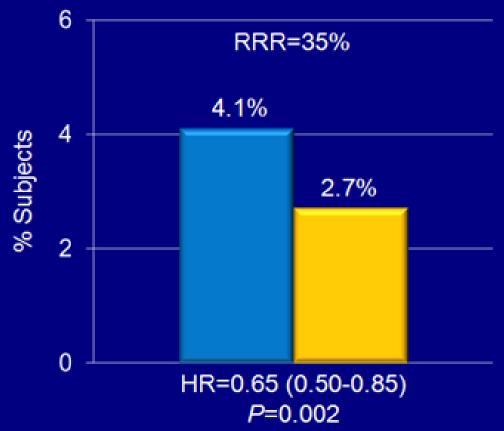
- Primary composite endpoint: CV mortality, nonfatal MI, nonfatal stroke
- Key secondary composite outcome: Primary plus hospitalization for UA
- Median 3.1-yr follow-up

Select baseline characteristics					
	Placebo (n=2,333)	Empagliflozin (n=4,687)			
Age, yrs	63.2	63.1			
CV history	2,307 (98.9%)	4,657 (99.4%)			
A1C	8.08%	8.07%			
Dual glucose-lowering therapy	1,148 (49.2%)	1,380 (29.4%)			

Lower Heart Failure Hospitalization With Empagliflozin Vs Placebo in High-Risk Patients EMPA-REG

EASD 2015

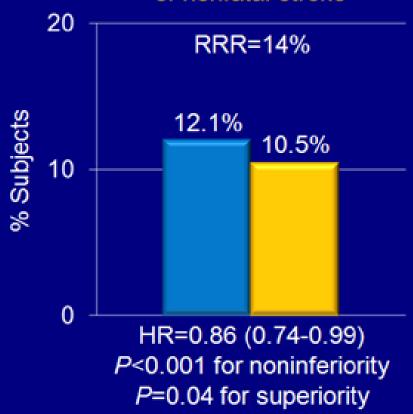
EMPA-REG OUTCOME

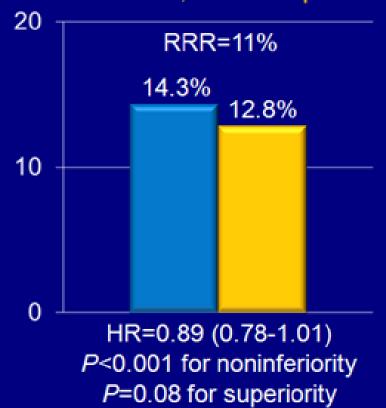


Placebo (n=2,333)

Empagliflozin (n=4,687)

Heart failure hospitalization



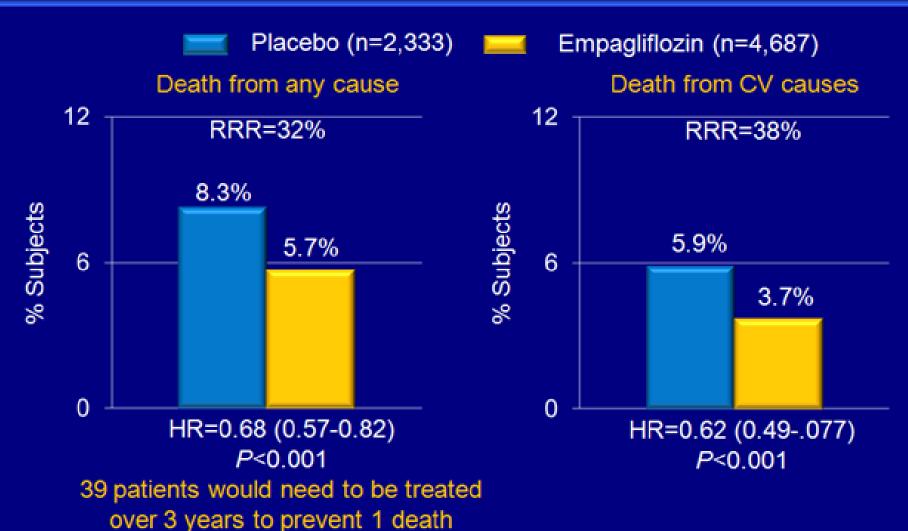

Empagliflozin Reduces CV Events & Mortality in High-Risk Type 2 Diabetes EMPA-REG OUTCOME

Subjects

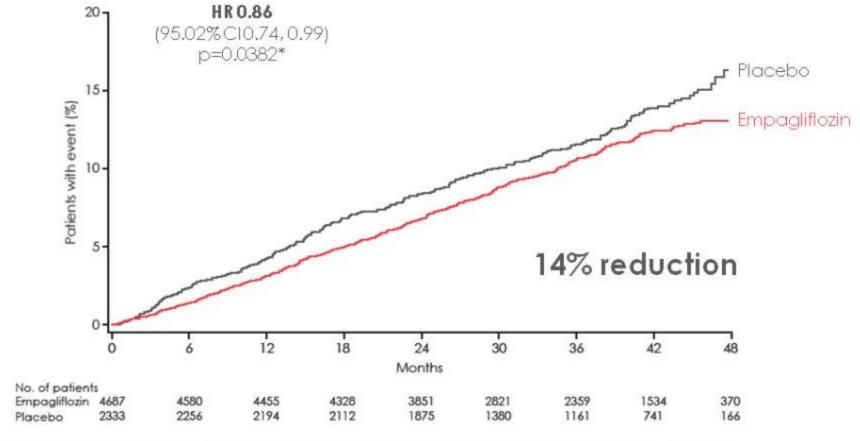
Placebo (n=2,333) Primary composite endpoint: Death from CV causes, nonfatal MI, or nonfatal stroke

Empagliflozin (n=4,687) Key secondary endpoint: Death from CV causes, nonfatal MI, nonfatal stroke, or UA hospitalization

Safety of Empagliflozin Vs Placebo in High-Risk Patients With Type 2 Diabetes **EMPA-REG OUTCOME**


- Adverse events, serious AEs, and AEs leading to discontinuation were similar for empagliflozin and placebo
- Rate of genital infections was higher for empagliflozin

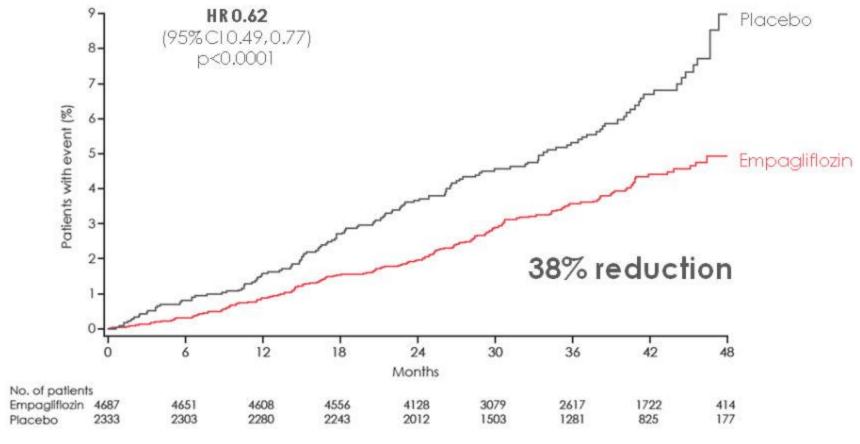
	Placebo (n=2,333)	Empagliflozin [*] (n=4,687)
Any AE	2,139 (91.7%)	4,230 (90.2%)
Serious AE	988 (42.3%)	1,789 (38.2%)
AE leading to discontinuation	453 (19.4%)	813 (17.3%)
Hypoglycemic AE	650 (27.9%)	1,303 (27.8%)
Volume depletion event	115 (4.9%)	239 (5.1%)
Acute renal failure	155 (6.6%)	346 (5.2%)
Bone fracture	91 (3.9%)	179 (3.8%)



Lower All-Cause & CV Mortality With Empagliflozin Vs Placebo in High-Risk Patients EMPA

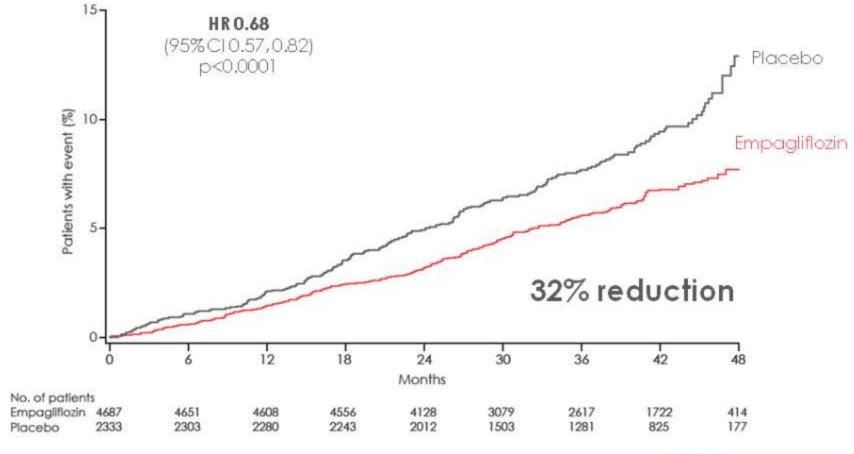
EMPA-REG OUTCOME

Primary outcome: 3-point MACE

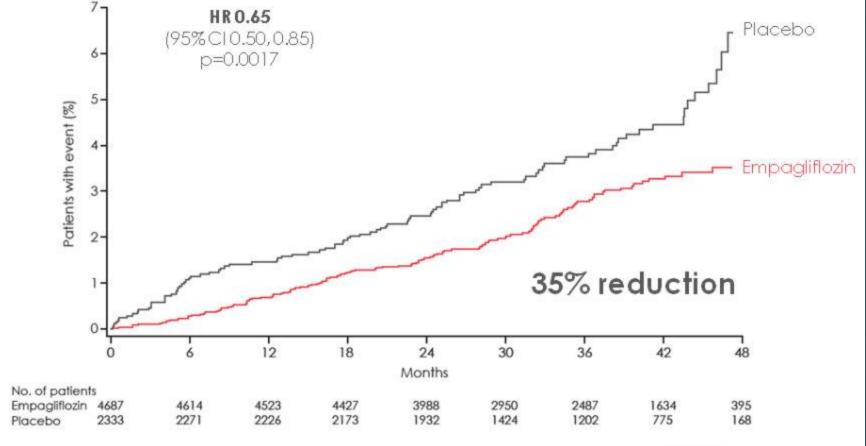


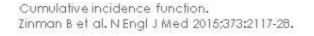
Cumulative incidence function. *Two-sided tests for superiority were conducted (statistical significance was indicated if $p\le0.0498$).

Zinman B et al. N Engl J Med 2015;373:2117-28.


CV death

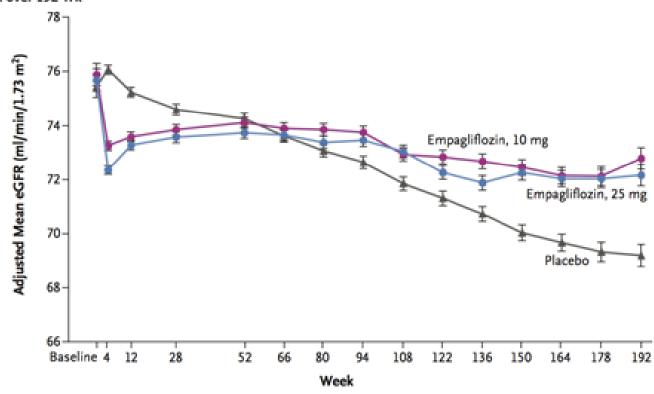
Cumulative incidence function. Zinman B et al. N Engl J Med 2015;373:2117-28.


All-cause mortality



Kaplan-Meier estimate. Zinman B et al. N Engl J Med 2015;373:2117-28.

Hospitalization for heart failure



Empaglaflozin and change in GFR over 3.5

years

A Change in eGFR over 192 Wk

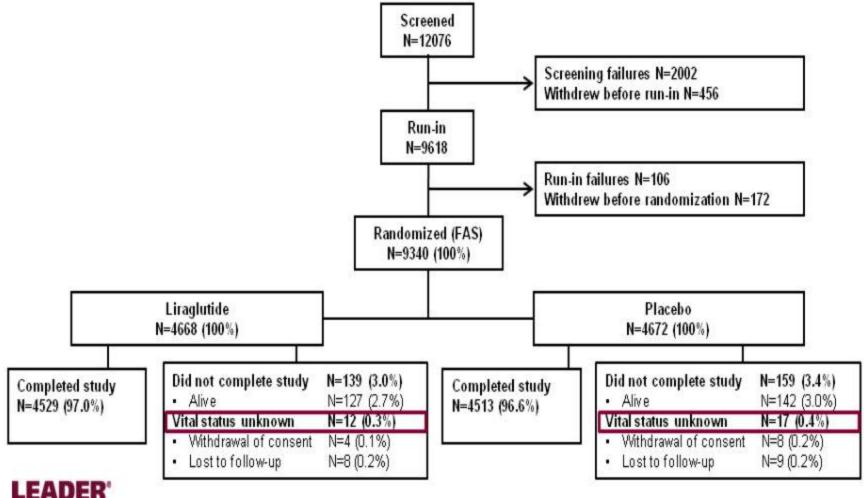
Empaglaflozin slows progression of renal disease

A Incident or Worsening Nephropathy

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

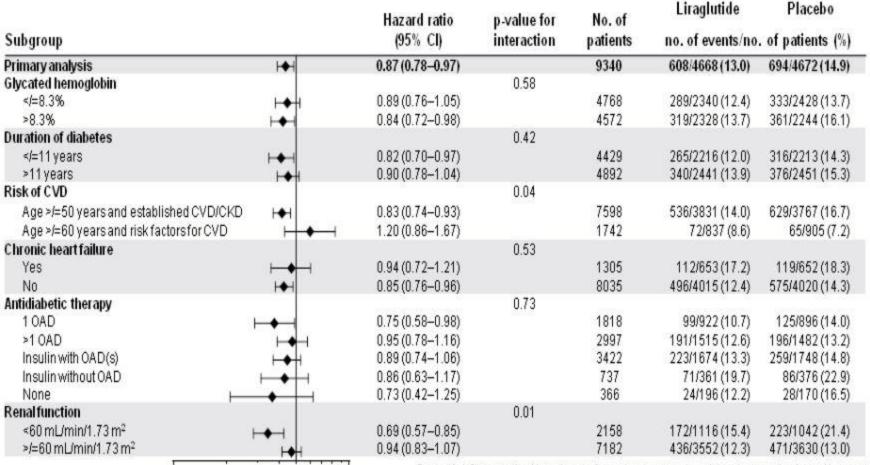
JULY 28, 2016


VOL. 375 NO. 4

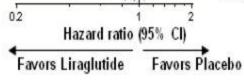
Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., Stuart Pocock, Ph.D., Neil R. Poulter, F.Med.Sci., Lasse S. Ravn, M.D., Ph.D., William M. Steinberg, M.D., Mette Stockner, M.D., Bernard Zinman, M.D., Richard M. Bergenstal, M.D., and John B. Buse, M.D., Ph.D., for the LEADER Steering Committee on behalf of the LEADER Trial Investigators*

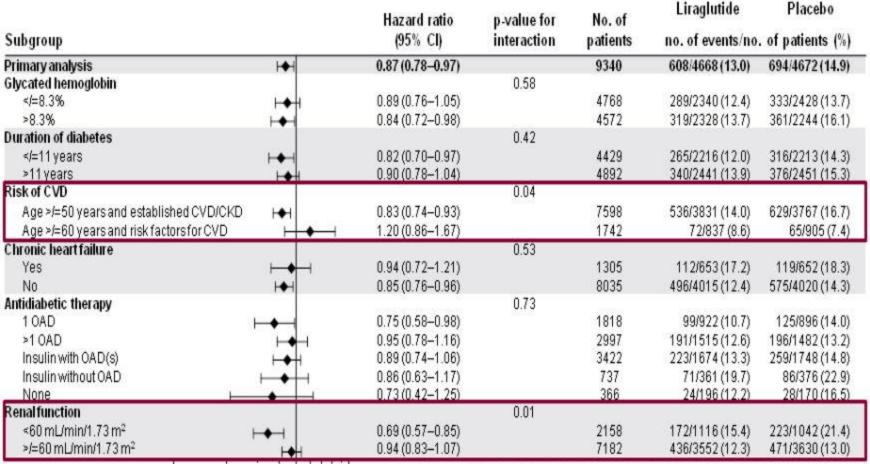
Study patient disposition

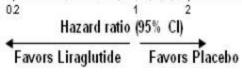

Baseline characteristics

(mean ± SD unless stated)


	Liraglutide (N=4668)	Placebo (N=4672)
Male sex, N (%)	3011 (64.5)	2992 (64.0)
Age, years	64.2 ± 7.2	64.4 ± 7.2
Diabetes duration, years	12.8 ± 8.0	12.9 ± 8.1
HbA _{1c} , %	8.7 ± 1.6	8.7 ± 1.5
BMI, kg/m²	32.5 ± 6.3	32.5 ± 6.3
Body weight, kg	91.9 ± 21.2	91.6 ± 20.8
Systolic blood pressure, mmHg	135.9 ± 17.8	135.9 ± 17.7
Diastolic blood pressure, mmHg	77.2 ± 10.3	77.0 ± 10.1
Heartfailure*, N (%)	835 (17.9)	832 (17.8)

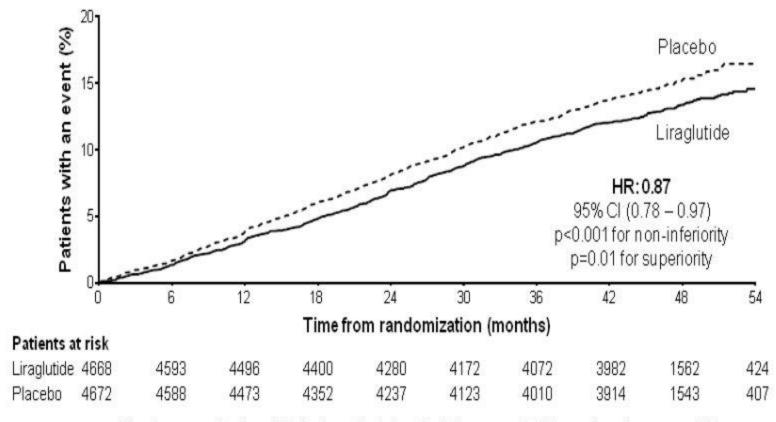
Primary outcome: Subgroup analyses





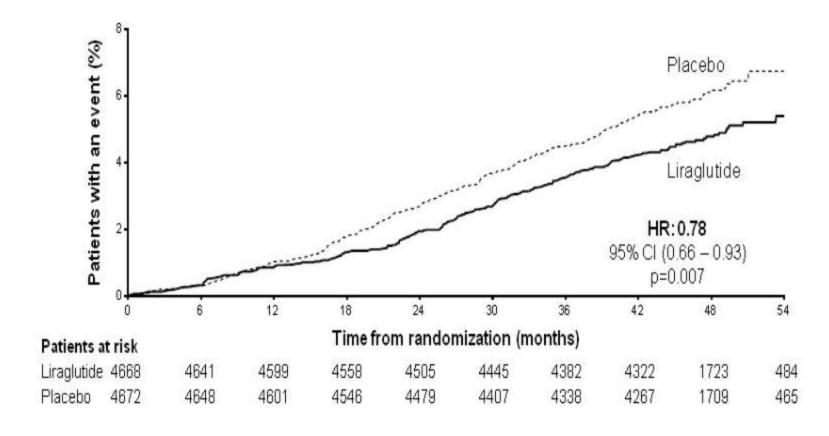
Prespecified Cox proportional-hazard regression analyses were performed for subgroups of patients with respect to the primary outcome (first occurrence of death from CV causes, nonfatal MI, or nonfatal stroke). Pivalues signify tests of homogeneity for between-group differences with no adjustment for multiple testing. The percentages of patients with a first primary outcome between the randomization date and the date of last follow-up are shown. There were missing data for BMI in 5 patients in the liragilutide group and 4 in the placebo group and for the duration of diabetes in 11 patients in the liragilutide group and 8 in the placebo group.

Primary outcome: Subgroup analyses

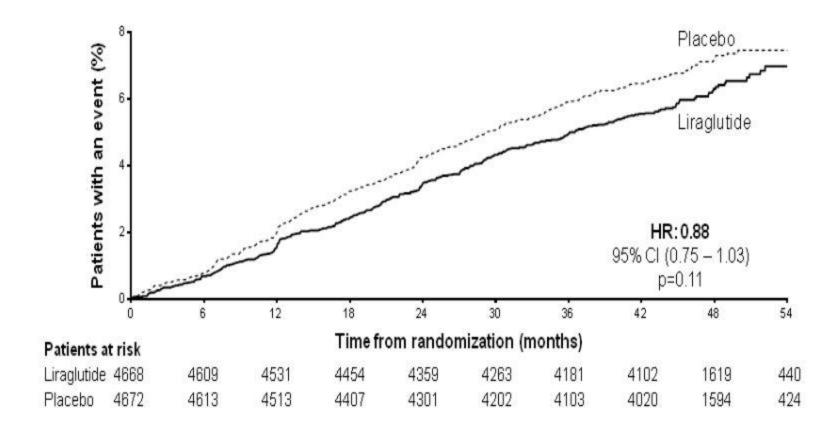


Prespecified Cox proportional-hazard regression analyses were performed for subgroups of patients with respect to the primary outcome (first occurrence of death from CV causes, nonfatal MI, or nonfatal stroke). Pivalues signify tests of homogeneity for between-group differences with no adjustment for multiple testing. The percentages of patients with a first primary outcome between the randomization date and the date of last follow-up are shown. There were missing data for BMI in 5 patients in the liragilutide group and 4 in the placebo group and for the duration of diabetes in 11 patients in the liragilutide group and 8 in the placebo group.

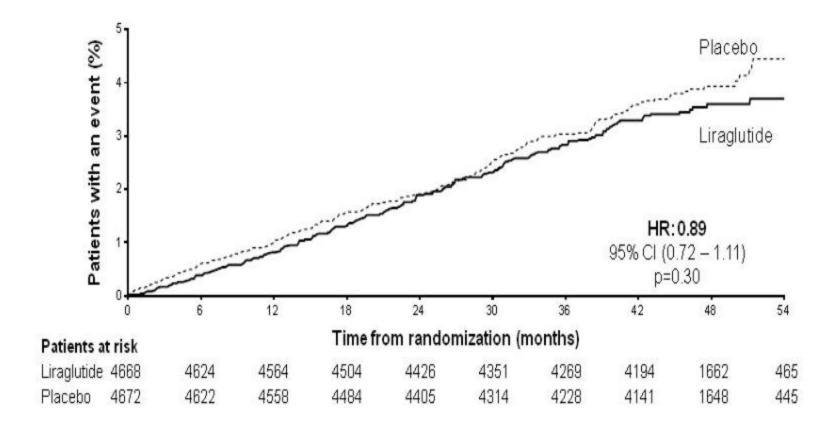
Primary outcome


CV death, non-fatal myocardial infarction, or non-fatal stroke

The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myo cardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular, HR: hazard ratio.

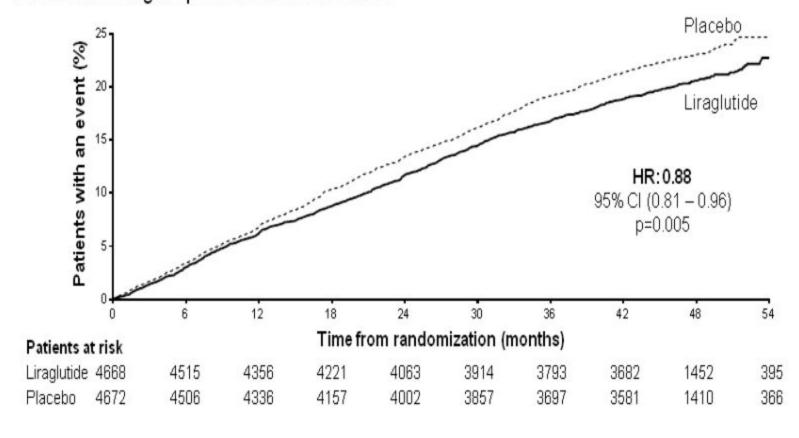

CV death

The cumulative incidences were estimated with the use of the Kaplan-Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the platients had an observation time beyond 54 months. Cl: confidence interval; CV: cardiovascular; HR: hazard ratio.


Time to non-fatal myocardial infarction

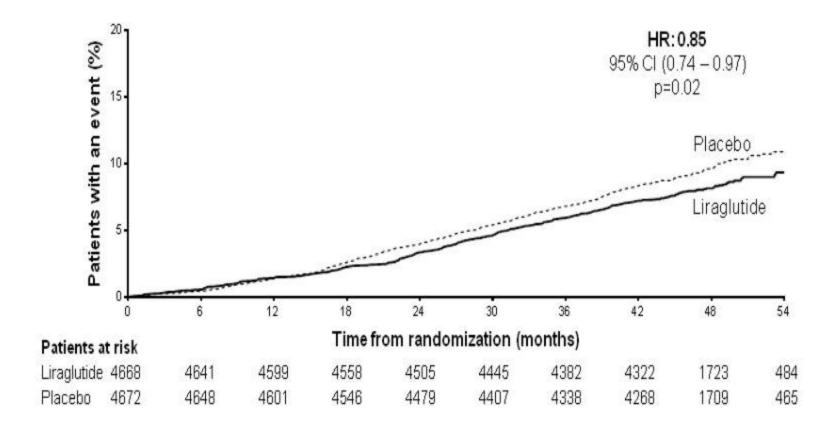
The cumulative incidences were estimated with the use of the Kaplan-Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the platients had an observation time beyond 54 months. Cl: confidence interval; HR: hazard ratio.

Time to non-fatal stroke

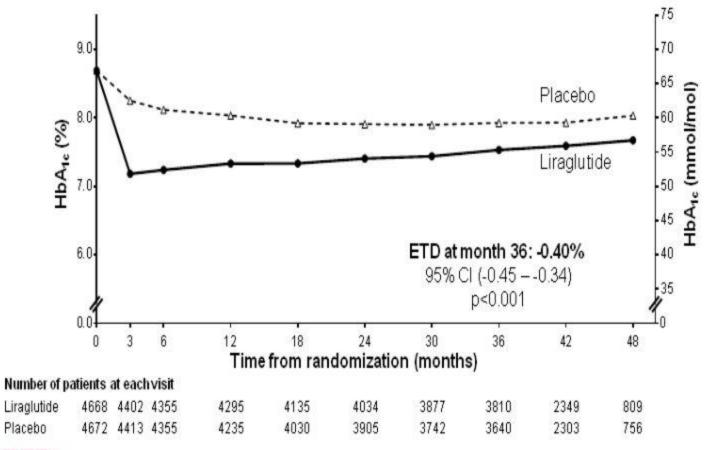


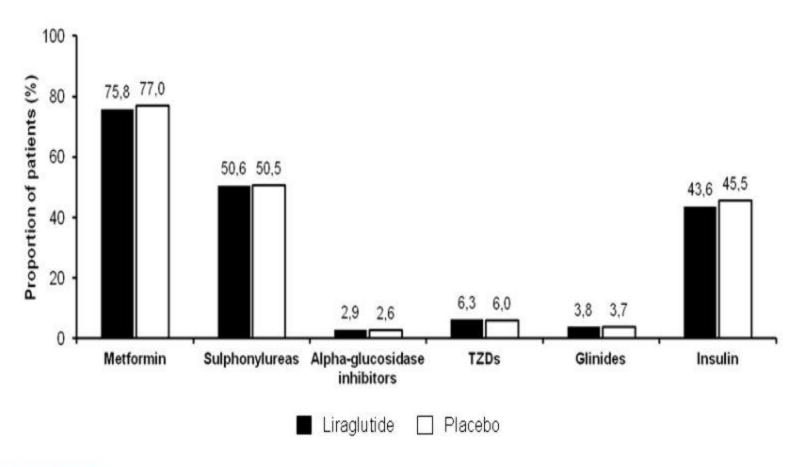
The cumulative incidences were estimated with the use of the Kaplan—Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

Expanded MACE

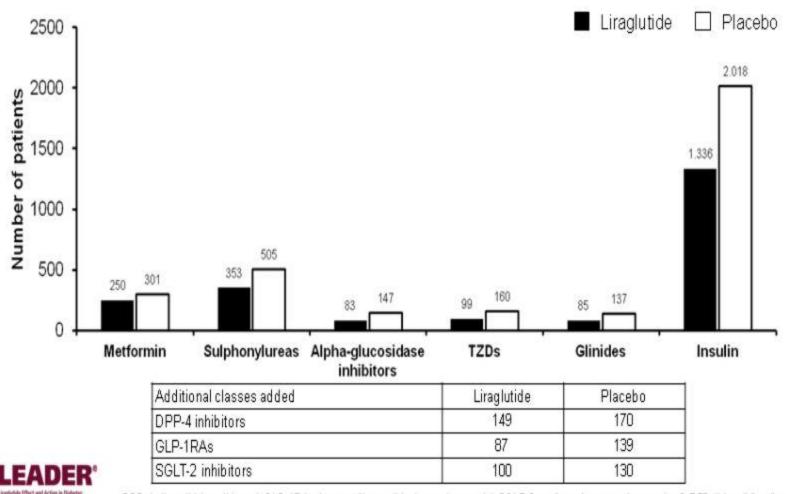

CV death, non-fatal MI, non-fatal stroke, coronary revascularization, or hospitalization for unstable angina pectoris or heart failure

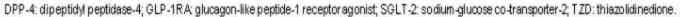
The cumulative incidences were estimated with the use of the Kaplan—Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the platients had an observation time beyond 54 months. Cl. confidence interval; CV: cardiovascular; HR: hazard ratio; MACE: major adverse cardiovascular event; MI: myocardial infarction.

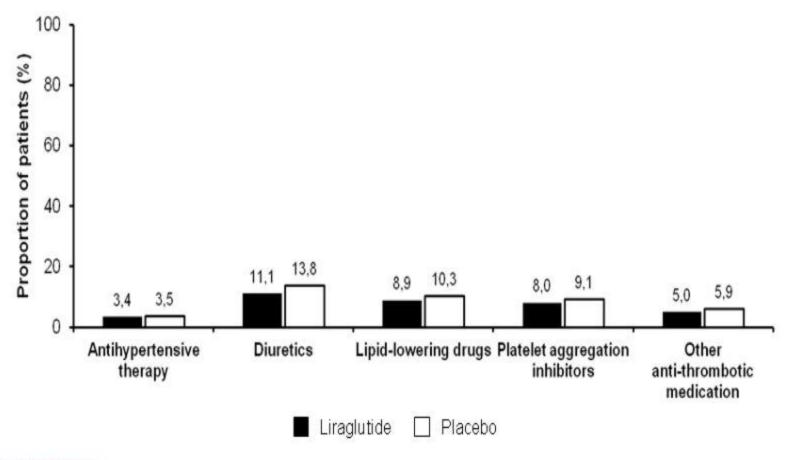

All-cause death


The cumulative incidences were estimated with the use of the Kaplan—Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

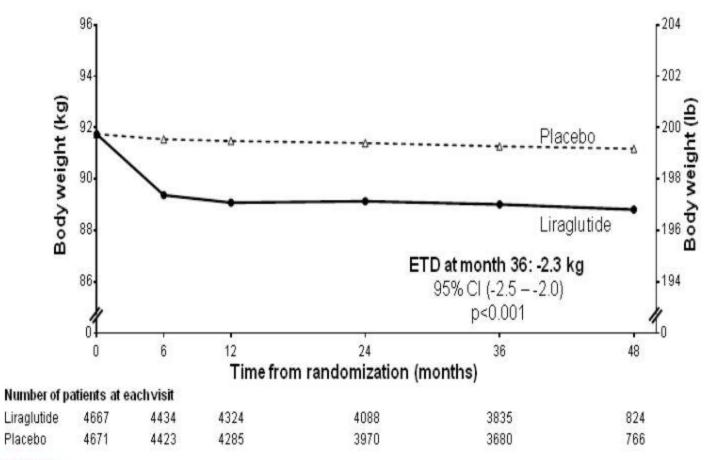
HbA_{1c}




Antihyperglycemic medication at baseline



Antihyperglycemic medications introduced during trial

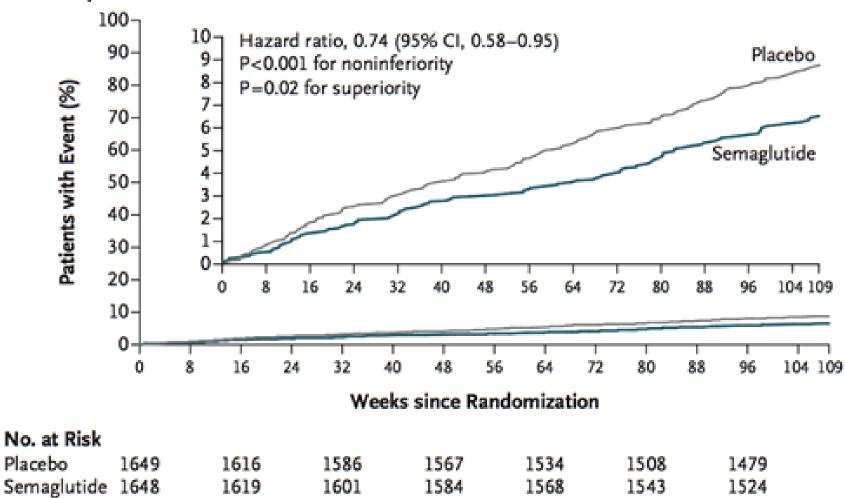


Cardiovascular medication introduced during trial

Body weight

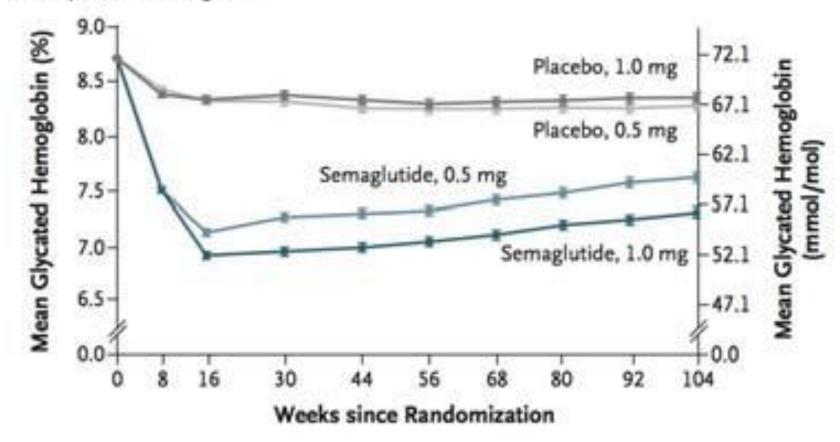
Data are estimated mean values from randomization to last scheduled visit for body weight measurement (month 48). CI: confidence interval; ETD: estimated treatment difference.

The NEW ENGLAND JOURNAL of MEDICINE

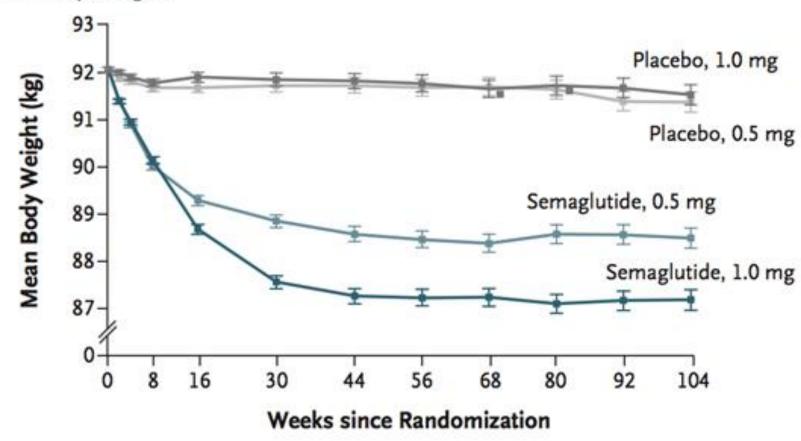

ORIGINAL ARTICLE

Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Steven P. Marso, M.D., Stephen C. Bain, M.D., Agostino Consoli, M.D., Freddy G. Eliaschewitz, M.D., Esteban Jódar, M.D., Lawrence A. Leiter, M.D., Ildiko Lingvay, M.D., M.P.H., M.S.C.S., Julio Rosenstock, M.D., Jochen Seufert, M.D., Ph.D., Mark L. Warren, M.D., Vincent Woo, M.D., Oluf Hansen, M.Sc., Anders G. Holst, M.D., Ph.D., Jonas Pettersson, M.D., Ph.D., and Tina Vilsbøll, M.D., D.M.Sc., for the SUSTAIN-6 Investigators*

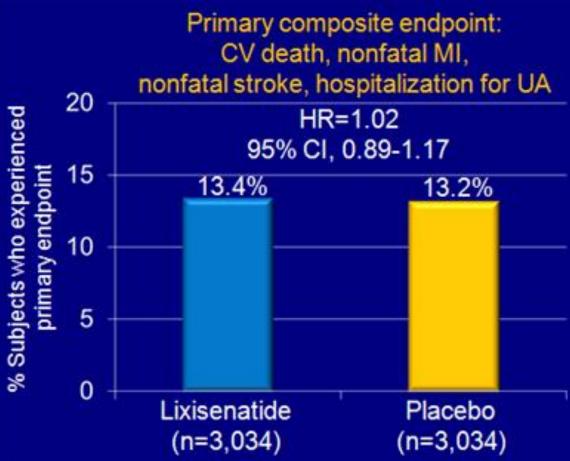


A Primary Outcome



A Glycated Hemoglobin

B Body Weight



ELIXIA(Lixisenatide)

ELIXA: No Cardiovascular Risks or Benefits With Lixisenatide Vs Placebo

'Up- or down-titrated to maximum 20 mcg/d
ELIXA=Evaluation of Cardiovascular Outcomes in Patients With Type 2 Diabetes
After Acute Coronary Syndrome During Treatment With Lixisenatide

About ELIXA

First events-driven CV outcomes study to provide data for a GLP-1 receptor agonist

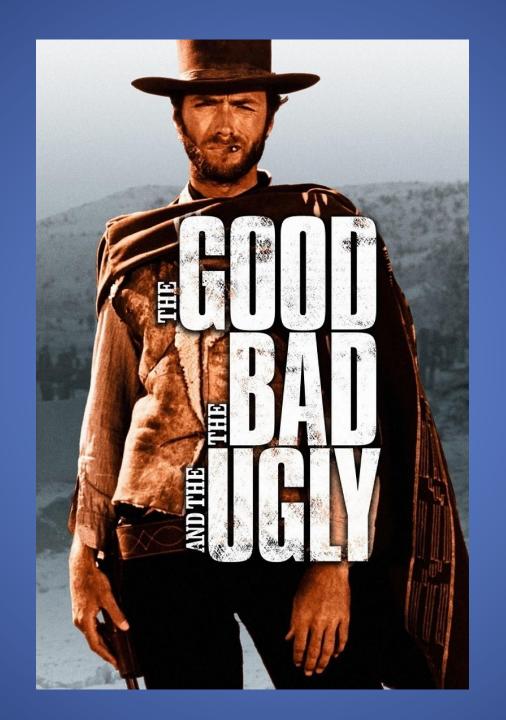
Randomized, double-blind, placebo-controlled trial

N=6,068 subjects with type 2 diabetes and recent ACS event

Randomization:

- Lixisenatide 10 mcg/d*
- Placebo

ELIXA: Cardiovascular Outcomes for Lixisenatide Vs Placebo


No increased risk for lixisenatide vs placebo for:

Primary composite outcome: CV death, nonfatal MI, nonfatal stroke, hospitalization	Lixisenatide 13.4%	Placebo 13.2%	
for UA	HR=1.02		
	(95% CI: 0.89-1.17)		
Primary outcome plus hospitalization for heart failure			
Hospitalization for heart failure	HR=0.96 (95% CI: 0.75-1.23)		
All-cause mortality	HR=0.94 (95% CI: 0.78-1.13)		

ELIXA=Evaluation of Cardiovascular Outcomes in Patients With Type 2 Diabetes After Acute Coronary Syndrome During Treatment With Lixisenatide HR=hazard ratio

SUMMARY

- CVD outcome trials potentially establishes safety of diabetes agents
- CVD outcome trials potentially establishes efficacy of agents
- These outcome trials and others will hopefully change the scope of therapeutic diabetes including modifying clinical paths and teach our future physicians and patients the impact of CVD, diabetes and safety.

