## Checking the Immune System in Cancer

## What the General Internist Should know

### Michael B. Dabrow, DO, FACOI Medical Director, Paoli Hospital Cancer Center



### Disclosure Information ACOI Annual convention 2016

• I have no financial relationships to disclose.

-I will discuss the following off label use and/or investigational use in my presentation: nivolumab



•

Michael B. Dabrow, DO dabrowm@mlhs.org



# What's so great about immunotherapy?

- 2011: The first immune checkpoint inhibitor, ipilimumab, was approved by the FDA
- 2014: Two new checkpoint inhibitors, pembrolizumab and nivolumab, were approved
- There are currently more than 150 clinical trials for using immune checkpoint inhibitors to treat lung, skin, kidney, ovarian, and bladder cancers

Mutations are especially bad if they occur in tumor suppressors

Tumor suppressors tell cells to stop dividing when DNA damage is detected, or tell cells when to die when damage is too severe

When DNA damage is found, p53 stops cell division and activates repair pathways





# Mutated BRAF is an **oncogene** frequently found in cancer



**BRAF** mutation V600E

The immune system determines what does belongs doesn't belong in the body

Immune cells recognize **antigens** based on "shape" with immune receptors



- An antigen is any molecule capable of inducing an immune response
- Antigens are frequently derived from pieces of bacteria and viruses

The T cell secrete special proteins that kill the infected cell, thereby stopping the spread of infection



To limit collateral damage, normal cells deactivate T cells using a protein called **PD-L1** (programmed death ligand 1), which bind to a receptor called **PD-1** on the T cell



# T cells with receptors that recognize **neoantigens** can kill cancer cells



## However, cancer cells can also use PD-L1 to escape killing by T cells



However, cancer cells can also use **PD-L1** to escape killing by T cells



## Tumor cells expressing PDL-1 to escape immune response



**Immune checkpoint inhibitors** target proteins like PD-1 and PD-L1 to prevent cancer from "escaping" the immune system







# Many relapses are caused by mutations that disable MHC-I presentation



Cytotoxic T lymphocyte - Associated Antigen-4

upregulated on T-cells after T-cell activation

downregulates T-cells via CD28 interaction and B7 ligand

CTLA-4 Knockout mice model

lymphoproliferative disease

melanocytic differentiation proteins have been shown to be targets for cytotoxic T lymphocytes



| Table 1. Checkpoint Inhibitors Under Development in NSCLC With Second-Line Clinical Trial Outcomes |                                     |                                                 |                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Generic Name                                                                                       | Alternate Names                     | Manufacturer                                    | Stage of Clinical Development                                                       |  |  |
| CTLA-4 inhibitors                                                                                  | der der mit der der der der der der | and the second second state of the state of the |                                                                                     |  |  |
| lpilimumab                                                                                         | MDX-010, MDX-101                    | Bristol-Myers Squibb                            | TWR: Rd phase II<br>OCT: Phase III                                                  |  |  |
| Tremelimumab                                                                                       | Ticilimumab, CP-675206              | AstraZeneca, Pfizer                             | TWR: Rd phase II<br>OCT: Phase III                                                  |  |  |
| PD-1 inhibitors                                                                                    |                                     |                                                 |                                                                                     |  |  |
| Nivolumab                                                                                          | ONO-4538, BMS-936558, MDX1106       | Bristol-Myers Squibb                            | TWR: Phase III<br>OCT: Phase III<br>Approved (accelerated)                          |  |  |
| Pembrolizumab                                                                                      | Lambrolizumab, MK-3475              | Merck                                           | TWR: Rd phase I/II (NSCLC dose finding)<br>OCT: Phase III<br>Approved (accelerated) |  |  |
| PD-L1 inhibitors                                                                                   |                                     |                                                 |                                                                                     |  |  |
| BMS-936559                                                                                         |                                     | Bristol-Myers Squibb                            | TWR: Phase I (NSCLC expansion)                                                      |  |  |
| Atezolizumab                                                                                       | MPDL3280A                           | Roche                                           | TWR: Rd phase II<br>OCT: Phase III                                                  |  |  |
| Durvalumab                                                                                         | MEDI4736                            | AstraZeneca                                     | TWR: Phase I/II<br>OCT: Phase III                                                   |  |  |
| Avelumab                                                                                           | MSB0010718C                         | Merck KGaA, EMD Serono, Pfizer                  | TWR: Phase Ib (NSCLC expansion)<br>OCT: Phase III                                   |  |  |

Abbreviations: CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; NSCLC, non-small-cell lung cancer; OCT, ongoing clinical trial (without results); PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; Rd, randomized; TWR, trial with results.

#### Metastatic Melanoma



#### Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation





INJECTION FOR INTRAVENOUS USE 10 mg/mL

#### MENU

#### What Is OPDIVO?

Is OPDIVO Right for You?

 $\mathbf{\nabla}$ 

Getting an OPDIVO Infusion

Paying for OPDIVO

Patient Resources



#### 1-855-OPDIVO-1

OPDIVO in other Indications > For U.S. Healthcare Professionals > Questions to Ask Your Doctor

U.S. Full Prescribing Information

SIGN UP This site is intended for U.S. residents 18 years of age or older.

Full Indication

**Medication Guide** 

If you have a type of advanced-stage lung cancer,

# THIS IS BIG. Watch the TV commercial

#### Advanced Non-Squamous NSCLC Trial

In a clinical trial of 582 patients whose advanced non-squamous NSCLC had spread or grown after treatment with platinum-based chemotherapy, 292 were treated with OPDIVO, 290 were treated with chemotherapy (docetaxel). OPDIVO was shown to reduce the risk of dying by 27% compared to chemotherapy (docetaxel). Half of the patients on OPDIVO were still alive at 12.2 months, compared to 9.4 months with chemotherapy (docetaxel). Please see additional study information here.

#### Advanced Squamous NSCLC Trial

In a clinical trial of 272 patients whose advanced squamous NSCLC had spread or grown after treatment with platinum-based chemotherapy, 135 were treated with OPDIVO, 137 were treated with chemotherapy (docetaxel). OPDIVO was shown to reduce the risk of dying by 41% compared to chemotherapy (docetaxel). Half of the patients on OPDIVO were still alive at 9.2 months, compared to 6 months with chemotherapy (docetaxel). OPDIVO will not work for everyone. Individual results may vary.

#### Nivolumab in BRAF negative Metastatic Melanoma



P-value is compared with the allocated alpha of 0.0021 for this interim analysis.

CI=confidence interval; HR=hazard ratio.

#### Metastatic Squamous Cell Lung Cancer - previously treated





How do we use these new therapies?

Metastatic Melanoma

KEYNOTE -6: pembrolizumab v ipilimumab

| 33% | 12% | RR      |
|-----|-----|---------|
| 70% | 58% | 1 yr OS |

#### much less toxicity with pembrolizumab

CHECKMATE: ipilimumab v ipilimumab/nivolumab

| 61%    | 11%     | RR        |
|--------|---------|-----------|
| 4.4 mo | not yet | PFS       |
| 54%    | 24%     | grade 3-5 |

What do we do in B-raf mutants?

Can we combine treatment on other tumor types?

Doctor, what are the possible side effects of this drug?

Anything that ends in an -itis.

| Selected side effects in the YERVOY pivotal phase 3 study          |                                                                                               |              |              |              |              |              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|
|                                                                    | PERCENTAGE (%) OF PATIENTS <sup>a</sup>                                                       |              |              |              |              |              |
|                                                                    | YERVOY         YERVOY           3 mg/kg         3 mg/kg + gp100           n=131         n=380 |              |              | gp1<br>n=1   | 100<br>132   |              |
| SYSTEM ORGAN CLASS/<br>Preferred term                              | Any<br>grade                                                                                  | Grade<br>3-5 | Any<br>grade | Grade<br>3-5 | Any<br>grade | Grade<br>3-5 |
| Gastrointestinal disorders<br>Diarrhea<br>Colitis                  | 32<br>8                                                                                       | 5<br>5       | 37<br>5      | 4<br>3       | 20<br>2      | 1<br>0       |
| Skin and subcutaneous<br>tissue disorders<br>Pruritus<br>Rash      | 31<br>29                                                                                      | 0<br>2       | 21<br>25     | <1<br>2      | 11<br>8      | 0<br>0       |
| General disorders and<br>administration site conditions<br>Fatigue | 41                                                                                            | 7            | 34           | 5            | 31           | 3            |

<sup>a</sup> Incidences presented in this table are based on reports of side effects regardless of casualty.

|                                    | PERCENTAGE (%) OF PATIENTS |                                    |  |  |  |
|------------------------------------|----------------------------|------------------------------------|--|--|--|
| n=511                              | YERVOY<br>3 mg/kg<br>n=131 | YERVOY<br>3 mg/kg + gp100<br>n=380 |  |  |  |
| Any immune-mediated<br>side effect | 15                         | 12                                 |  |  |  |
| Enterocolitis <sup>a,b</sup>       | 7                          | 7                                  |  |  |  |
| Hepatotoxicity <sup>a</sup>        | 1                          | 2                                  |  |  |  |
| Dermatitis <sup>a</sup>            | 2                          | 3                                  |  |  |  |
| Neuropathy*                        | 1                          | <1                                 |  |  |  |
| Endocrinopathy                     | 4                          | 1                                  |  |  |  |
| Hypopituitarism                    | 4                          | 1                                  |  |  |  |
| Adrenal insufficiency              | 0                          | 1                                  |  |  |  |
| Other                              |                            |                                    |  |  |  |
| Pneumonitis                        | 0                          | <1                                 |  |  |  |
| Meningitis                         | 0                          | <1                                 |  |  |  |
| Nephritis                          | 1                          | 0                                  |  |  |  |
| Eosinophilia                       | 1                          | 0                                  |  |  |  |
| Pericarditis <sup>8,6</sup>        | 0                          | <1                                 |  |  |  |

#### **Immune Mediated Entercolitis**

Typically after 6 weeks of treatment – 10% incidence with ipilimumab

2% incidence with PD-1 agents

#### DIARRHEA

Severe: Diarrhea ≥7 stools above baseline, fever, ileus, peritoneal signs consistent with bowel perforation; Grade 3–5



#### **Management**

**STOP** ipilimumab

oral steroids (.5 mg/kg/day to 2 mg/kg/day prednisone) taper over 4 weeks Infliximab 5 mg/kg q o week

#### GI Adverse Event Management Algorithm

А

Rule out noninflammatory causes. If noninflammatory cause is identified, treat accordingly and continue I-O therapy. Opiates/narcotics may mask symptoms of perforation. Infliximab should not be used in cases of perforation or sepsis.



May need to start with IV steroids

#### **Immune-mediated Hepatits**

usually asymptomtic, more common with CTLA-4 inhibitors (10% v 1-2%) 511 patient study: grade 3-5 toxicity = 1.6% with 3 deaths

Severe: AST or ALT elevations >5 × ULN and/or total bilirubin elevations >3 × ULN;Grade 3–5

#### **Management**

Grade 2: WITHHOLD ipilimumab/PD-1

Grade 3-4: STOP ipilimumab/PD-1

Prednisone 1-2 mg/kg/day

taper over 4 weeks when LTFs return to normal

#### DO NOT USE INFLIXIMAB

#### **Immune-mediated dermal lesions**

Most common irAE: occurs early

reticular, maculopapular rash on trunk or extremities

Grade 2 = 10%

Grade 3-5 = 2.5% (1 death TEN in 511 patients)

Severe: Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full-thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3–5



## Squamous Cell Skin Cancer - Vemurafenib











**Immune-mediated dermal lesions** 

#### Management

Moderate: WITHHOLD Ipilimumab/PD-1 drug

Severe: STOP lpilimumab/PD-1 drug

Prednisone 1-2 mg/kg/day. Wean over 4 weeks

Unique to PD-1 drugs: oral mucositis, dry mouth

#### **Immune-mediated Neuropathy**

peripheral sensory neuropathy – grade 3-4 = .4%
peripheral motor neuropathy - grade 3-4 = .4%
1 case fatal Guillain-Barre

Management

Moderate neuropathy: WITHHOLD Ipilimumab/PD-1 drug

Severe neuropathy: STOP Ipilimumab/PD-1 drug consider Prednisone 1-2 mg/kg/day

#### **Immune-mediated Endocrinopathies**

|                       | <u>grade 3-4</u> |
|-----------------------|------------------|
| hypopituitarism       | 2.1%             |
| adrenal insufficiency | .3%              |
| hypothyroidism        | .1%              |

Enlargement of pituitary, gonadal dysfunction

#### Management

WITHHOLD ipilimumab/PD-1 drug

Prednisone 1-2 mg/kg/day

Appropriate hormone therapy

#### **Assorted immune-mediated Adverse Reactions**

Nephritis

Pneumonitis

Myocarditis

Myositis

COSTIpilimumab\$30,000.00 per infusion/\$120,000.00 per courseNivolumab\$15,172.00/monthVemurafenib\$10,770.00/month

#### **Timeline for Immune Related Adverse Events**



## **Toxicity of Toxicity Treatment**

Aspergillus pneumonia

High blood sugars

#### Trastuzumab (Herceptin)



### Immunotherapy in Breast Cancer – Metastatic Disease

 Table 2. Randomized Trials Comparing Chemotherapy Alone with Chemotherapy plus Trastuzumab for Metastatic

 Disease.

| <b>Trial and End Result</b><br>Slamon et al. <sup>46</sup> | Chemotherapy                                            | Chemotherapy<br>plus Trastuzumab                          | P Value |
|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------|
| No. of patients                                            | 234 (doxorubicin and<br>cyclophosphamide or paclitaxel) | 235 (doxorubicin and cyclo-<br>phosphamide or paclitaxel) |         |
| Time to disease progression (mo)                           | 4.6                                                     | 7.4                                                       | <0.001  |
| Response rate (%)                                          | 32                                                      | 50                                                        | <0.001  |
| Median overall survival (mo)                               | 20                                                      | 25                                                        | 0.046   |
| Marty et al.47                                             |                                                         |                                                           |         |
| No. of patients                                            | 94 (docetaxel)                                          | 92 (docetaxel)                                            |         |
| Time to disease progression (mo)                           | 6.1                                                     | 10.7                                                      | 0.001   |
| Response rate (%)                                          | 34                                                      | 61                                                        | 0.001   |
| Median overall survival (mo)                               | 23                                                      | 31                                                        | 0.032   |

#### Immunotherapy in Breast Cancer – Adjuvant Therapy

| Trial                                        | Study Regimen                                                                                   | No. of<br>Patients | Disease-free<br>Survival | Hazard<br>Ratio | P Value         | Overall<br>Survival | Hazard<br>Ratio | P Value |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------|-----------------|---------------------|-----------------|---------|
|                                              |                                                                                                 |                    | %                        |                 |                 | %                   |                 |         |
| NSABP B-31 and<br>NCCTG N-9831 <sup>79</sup> | Doxorubicin and cyclophos-<br>phamide, then paclitaxel                                          | 1679               | 67                       |                 |                 | 87                  |                 |         |
|                                              | Doxorubicin and cyclophos-<br>phamide, then paclitaxel<br>plus trastuzumab, then<br>trastuzumab | 1672               | 85                       | 0.48            | <0.001          | 91                  | 0.67            | 0.02    |
| NCCTG N-9831 <sup>80</sup>                   | Doxorubicin and cyclophos-<br>phamide, then paclitaxel                                          | 979                |                          |                 |                 |                     |                 |         |
|                                              | Doxorubicin and cyclophos-<br>phamide, then paclitax-<br>el, then trastuzumab                   | 985                |                          | 0.87            | 0.29†           |                     | 0.85            | 0.48†   |
|                                              | Doxorubicin and cyclophos-<br>phamide, then paclitaxel<br>plus trastuzumab, then<br>trastuzumab | 840                |                          | 0.64<br>0.48    | 0.01†<br><0.01† |                     | 0.74            | 0.27‡   |
| HERA <sup>81</sup> ‡                         | Observation                                                                                     | 1698               | 74                       |                 |                 | 90                  |                 |         |
|                                              | Trastuzumab for 1 year                                                                          | 1703               | 81                       | 0.64            | <0.001          | 92                  | 0.66            | 0.011   |
| BCIRG 006 <sup>82</sup>                      | Doxorubicin and cyclophos-<br>phamide, then docetaxel                                           | 1073               | 73                       |                 |                 | 86                  |                 |         |
|                                              | Doxorubicin and cyclophos-<br>phamide, then docetaxel<br>plus trastuzumab, then<br>trastuzumab  | 1074               | 84                       | 0.49            | 0.001†          | 92                  | 0.59            | 0.004   |
|                                              | Docetaxel, carboplatin, and trastuzumab                                                         | 1075               | 80                       | 0.61            | <0.01†          | 91                  | 0.66            | 0.02    |
| FinHer <sup>83</sup>                         | Chemotherapy                                                                                    | 116                | 78                       |                 |                 | 90                  |                 |         |
|                                              | Chemotherapy plus trastuz-<br>umab                                                              | 116                | 89                       | 0.42            | 0.01            | 96                  | 0.41            | 0.07    |

\* Trial-registration numbers are as follows: NSABP, ClinicalTrials.gov number, NCT00004067; NCCTG, NCT00005970; HERA, NCT00045032; BCIRG, NCT00021255; and Finland Herceptin Study (FinHer), Current Controlled Trials number, ISRCTN76560285).

† The P value is for the comparison with the control group.

‡ Data were not available for the third group of the study.

#### pertuzumab – a second HER-2 antibody: metastatic disease

![](_page_41_Figure_2.jpeg)

 The final OS analysis was performed when 221 patient deaths occurred in the placebo-treated group and 168 occurred in the PERJETA-treated group.<sup>1</sup>

pertuzumab – a second HER-2 antibody: neo-adjuvant treatment

![](_page_42_Figure_2.jpeg)

### Lapatinib

![](_page_43_Figure_2.jpeg)

lapatinib: metastatic disease after anthracycline, taxane, trastuzumab

Time to Progression<sup>a</sup> (Independent Assessment)<sup>b</sup> in the Intent-to-Treat Population<sup>1</sup>

![](_page_44_Figure_3.jpeg)

antibody conjugates – ado-trastuzumab emtansine

![](_page_45_Picture_2.jpeg)

#### immunoconjugate

![](_page_46_Figure_2.jpeg)

Toxicities of HER-2 blockade

#### Cardiac

|                                        | <u>Cardiac Toxicity</u> |
|----------------------------------------|-------------------------|
| Slamon: Adriamycin/Cytoxan/Trastuzumab | 27%                     |
| Taxol/Trastuzumab                      | 13%                     |
| Trastuzumab                            | 3-7%                    |
|                                        |                         |
| Lapatinib                              | 1.6%                    |
| Ado-Trastuzumab Emtansine              | 1.7%                    |
| Pertuzumab v Control                   | 6.6% v 8.6%             |

. .

Vaccines for Breast Cancer

NeuVax (nelipepimut-S, E75) plus GM-CSF: PRESENT Study

secondary prevention in patients with low/intermediate HER-2

limited to HLA-A2 or A3

accrual completed – expect first analysis April 2018

#### Phase II trial of E75 vaccine to prevent recurrence in high risk breast cancer patients

![](_page_49_Figure_1.jpeg)

Volume 118, Issue 10, pages 2594-2602, 11 OCT 2011 DOI: 10.1002/cncr.26574 http://onlinelibrary.wiley.com/doi/10.1002/cncr.26574/full#fig2

#### Cancer

#### References

Treating cancer by targeting the Immune system. Hwu, P., NEJM 2010, 363:779-781.

Releasing the brakes on cancer immunotherapy. Ribas, A., NEJM 2015, 373:1490-1492.

Immune checkpoint blockade in cancer therapy. Postow, MA, Callahan, MK, Wolchok, JD. Journal of Clinical Oncology 33:1974-1982.

Management of adverse events following treatment with anti-programmed death-1 agents. Weber, JS, Postow, M, Lao, CD, Schadendorf, D. Oncologist 2016, 21:1230.1240.

![](_page_51_Picture_0.jpeg)