Non-vitamin K anticoagulant use in advanced kidney disease and dialysis?

Kevin Chan, MD MSci

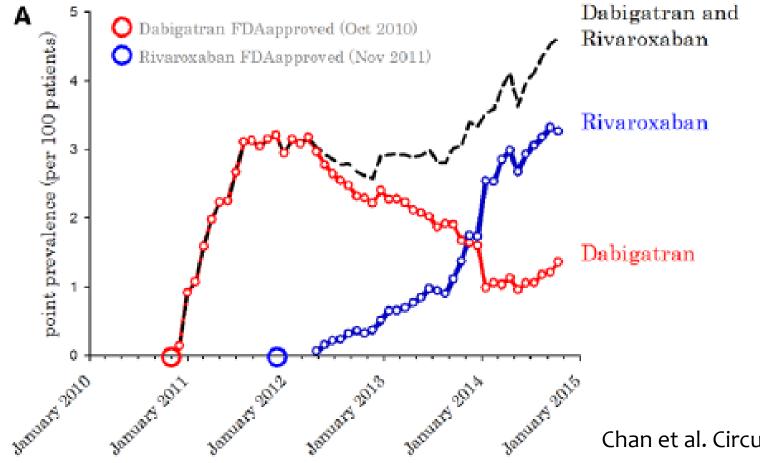
Disclosures

Medical Officer Fresenius Medical Care North America Waltham, MA

Assistant Professor (part-time) Nephrology Division Massachusetts General Hospital Boston MA

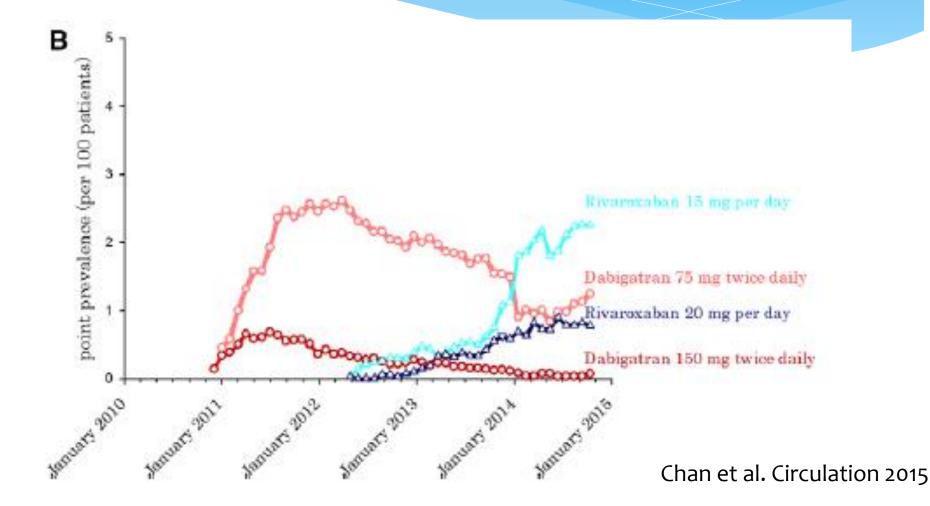
Outline

- Pharmacoepidemiology of non-vitamin K anticoagulants (NOACs) in advanced CKD/dialysis (GFR<30 cc/min)
- * Pharmacokinetics and drug dosing in CKD/dialysis
- * Summary of evidence for NOACs in CKD
- * Should we anticoagulate CKD/dialysis patients with AF?
- * Discontinuation and reversal of NOACs in CKD/dialysis


Non-vitamin K anticoagulants (NOAC)

- New class of oral anticoagulant medications first approved in October 2010 (Dabigatran)
- Mechanism of action: direct Xa inhibitor, thrombin inhibitor
- Pivotal phase III studies in the general population show these drugs are equivalent or better than warfarin
 - * Stroke prevention
 - * bleeding

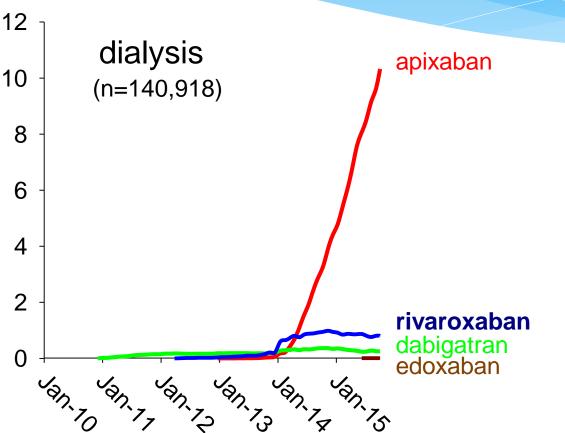
Non-vitamin K anticoagulants (NOAC)


- * All NOACs are dependent on the kidney for elimination
- Patients with eGFR < 25-30 cc/min were excluded from all pivotal phase III trials
- * AHA guidelines recommend warfarin of the drug of choice when the eGFR < 30 cc/min
- NOACs originally contraindicated in patients with eGFR < 30 cc/min

NOAC use among anticoagulated patients on dialysis

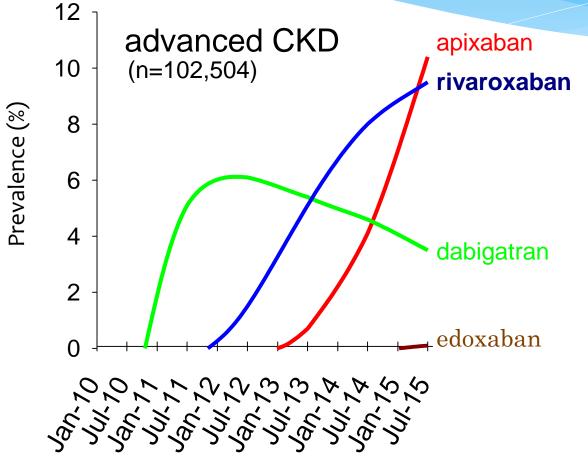
Chan et al. Circulation 2015

NOAC use among anticoagulated patients on dialysis


Rate Ratio of NOAC bleeding relative to warfarin

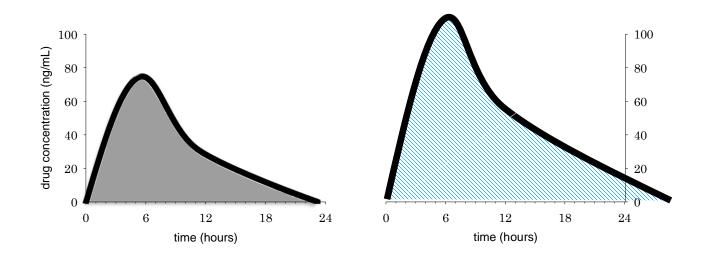
	Major bleeding	Death from bleeding
Dabigatran	1.48 (1.21-1.81)	1.78 (1.18-2.68)
Rivaroxaban	1.38 (1.03-1.83)	1.71 (0.93-3.12)
Warfarin	1.00 (ref)	1.00 (ref)

Chan et al. Circulation 2015

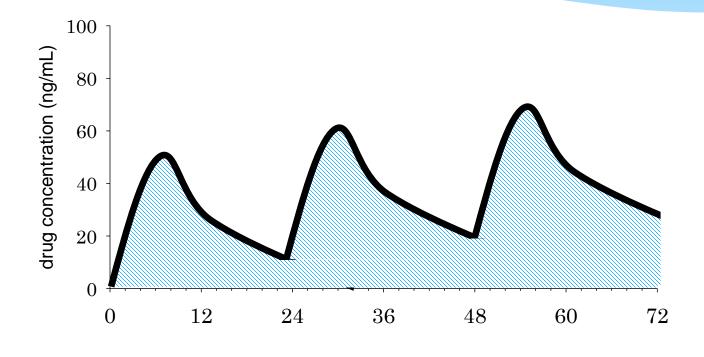

NOAC use among anticoagulated patients on dialysis

Chan et al. JACC 2016

NOAC use among anticoagulated patients with eGFR < 30 cc/min


Chan et al. JACC 2016

Renal pharmacokinetics of anticoagulants


Renal pharmacokinetics (PK)

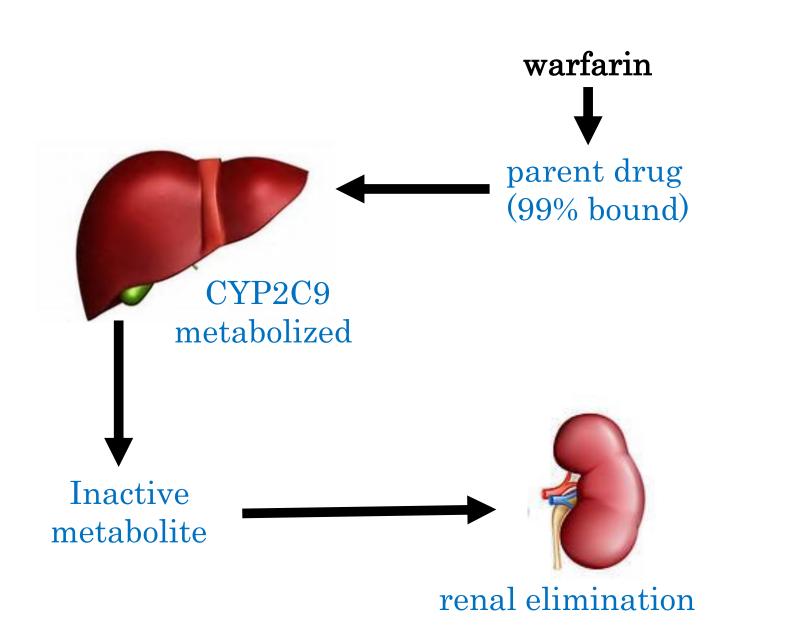
- Uremia affects every organ to impacts the PK of many drugs
- * renal elimination : glomerulus +/- tubules
- * renal disease impairs glomerular and tubular function
 - * The drug clearance decreases
 - * Drug half life increases

The effect of decrease clearance

Drug bioaccumulation

time (hours)

Renal pharmacokinetics (PK)

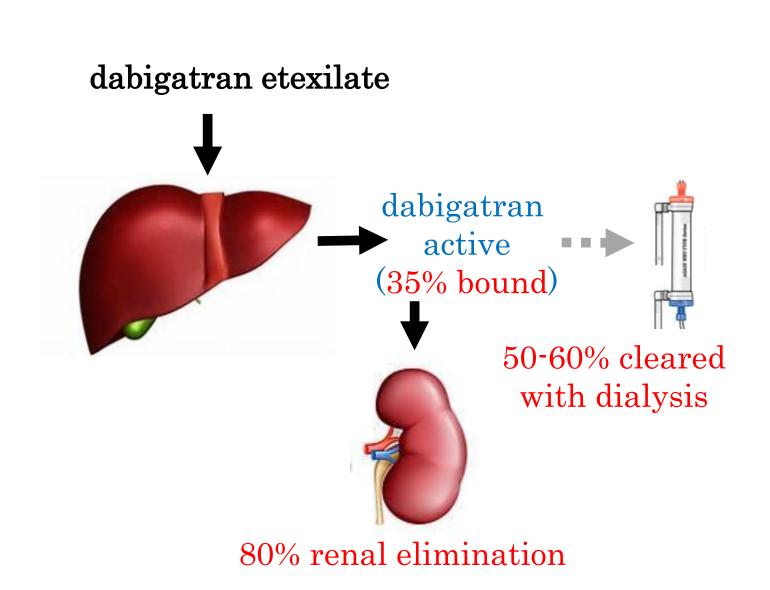

- Renal dose adjustment
 - decrease dose or
 - decrease frequency
- eGFR for renal drug dosing
 - * Pivotal phase III trials used <u>Cockcroft-Gault</u>
 - * despite increased accuracy with MDRD and CKD-EPI

Non vitamin-K anticoagulants use in CKD/dialysis

Warfarin

- * Rodenticide in 1948; anticoagulant use in 1954
- * Studies indicate lower doses needed in CKD
 - * GFR>60: 4.8 mg qd
 - * GFR 30-59: 4.3 mg qd
 - * GFR < 30: 3.9 mg qd
- * Outcomes of Warfarin vs Aspirin

	HR for stroke (vs aspirin)	HR for bleed (vs aspirin)
meta-analysis	o.68 (superior)	1.45 (NS)
eGFR=30-50 cc/min	Not done	Not done

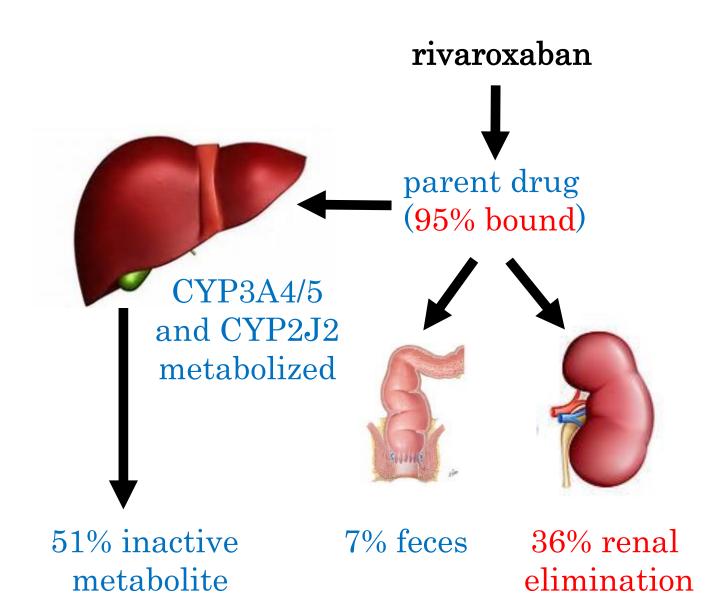

Dabigatran

- * First NOAC approved for atrial fibrillation on October 2010
- Direct thrombin inhibitor
- * Outcomes for dabigatran vs warfarin (n=18,113)

	HR for stroke (vs warfarin)	HR for bleed (vs warfarin)
Full study	o.66 (superior)	0.93 (NS)
eGFR=30-50 cc/min	0.56 (superior)	1.01 (NS)

* Dose

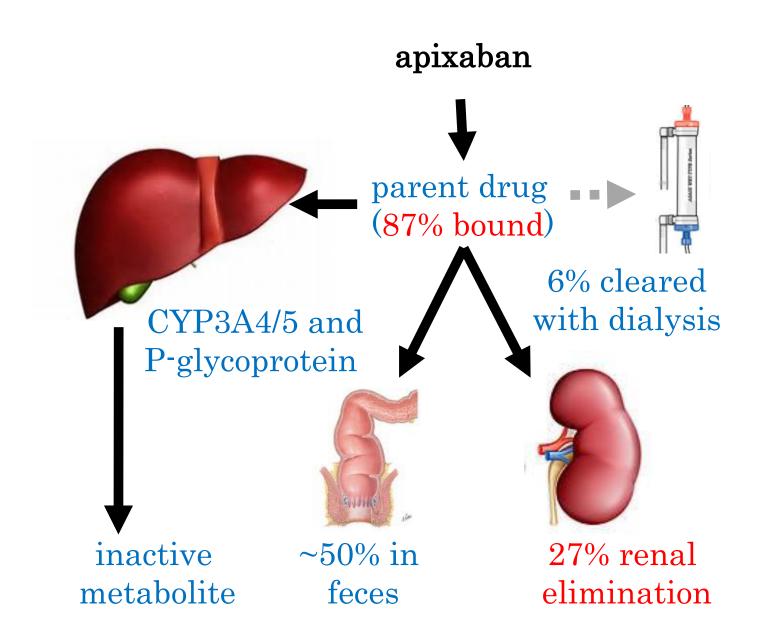
- * 150 mg BID
- * 75 mg BID with eGFR 15-30 cc/min


Rivaroxaban

- * FDA approved November 2011
- * Factor Xa inhibitor
- * Outcomes for rivaroxaban vs warfarin (n=14,264)

	HR for stroke (vs warfarin)	HR for bleed (vs warfarin)
Full study	o.88 (non-inferior)	1.03 (NS)
eGFR=30-50 cc/min	0.88 (NS)	0.98 (NS)

* Dose


- * 20 mg qd
- * 15 mg qd with eGFR 15-50 cc/min

Apixaban

- * FDA approved December 2012
- * Factor Xa inhibitor
- * Outcomes in apixaban vs warfarin (n=18,201)

	HR for stroke (vs warfarin)	HR for bleed (vs warfarin)
Full study	0.79 (superior)	o.69 (superior)
eGFR=30-50 cc/min	0.79 (NS)	0.50 (superior)

Apixaban dose

- * Dose
 - * 5 mg bid
 - * 2.5 mg bid if \geq 2 of the following:
 - * age ≥80 years,
 - * body weight ≤60 kg
 - * serum creatinine ≥1.5 mg/dL
 - * Dialysis: 5 mg bid (no dose reduction) unless
 - * age ≥80 years,
 - * body weight ≤60 kg

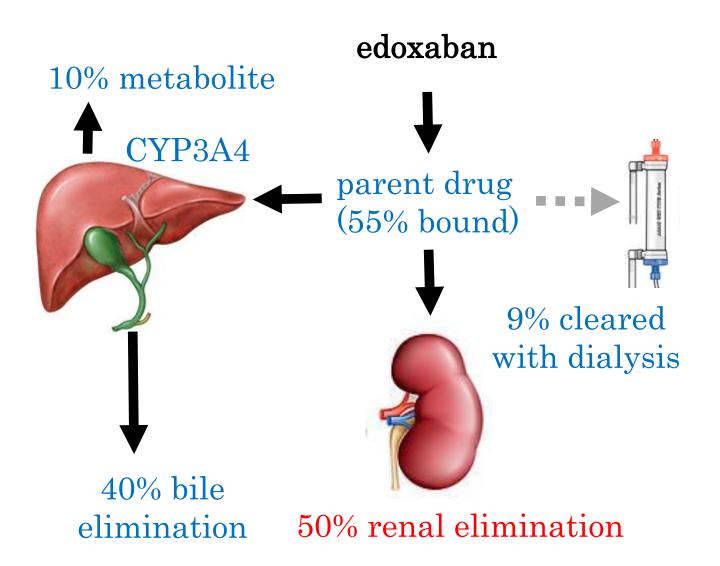
Apixaban dose

- * Pharmacokinetic studies
 - * eGFR=15 cc/min: 44% higher apixaban levels
 - * Dialysis: 36% higher apixaban levels
- * Further studies are needed to establish the optimal apixaban dose in patients with an eGFR< 15 cc/min

Apixaban label

Patients with End-Stage Renal Disease on Dialysis

Clinical efficacy and safety studies with ELIQUIS did not enroll patients with end-stage renal disease (ESRD) on dialysis. In patients with ESRD maintained on intermittent hemodialysis, administration of ELIQUIS at the usually recommended dose [see Dosage and Administration (2.1)] will result in concentrations of apixaban and pharmacodynamic activity similar to those observed in the ARISTOTLE study [see Clinical Pharmacology (12.3)]. It is not known whether these concentrations will lead to similar stroke reduction and bleeding risk in patients with ESRD on dialysis as was seen in ARISTOTLE.


Edoxaban

- * Newest NOAC approved
- * Factor Xa inhibitor
- * Outcomes of edoxaban vs warfarin (n=21,105)

	HR for stroke (vs warfarin)	HR for bleed (vs warfarin)
Full study	0.79 (non-inferior)	o.8o (superior)
eGFR=30-50 cc/min	0.89 (NS)	0.77 (superior)

* Dose

- * 60 mg qd
- * 30 mg qd when eGFR 15 to 50 cc/min
- * Do not use when eGFR > 95 cc/min

Conclusion

- NOACs are equivalent or better at preventing stroke and bleeding (vs warfarin) in the general AF population
- * All NOAC depend on the kidney for elimination
- There is no trial data for NOAC use in patients with an eGFR < 30 cc/min
- Despite this, FDA label provide dosing recommendation for NOAC down to eGFR 15 cc/min and for eGFR <15 cc/min for apixaban

Should we anti-coagulate advanced CKD and dialysis patients with atrial fibrillation?

Anticoagulation when eGFR<30?

- Warfarin increases the risk of major bleeding by 20% or more
- Efficacy of stroke prevention is likely reduced in patients with eGFR < 30 cc/min
 - Uremic platelet defect
 - Heparin use during dialysis
 - * Competing risk/Short lifespan

Anticoagulation when eGFR<30?

- * No trial data
- * Observation data: confounding by indication
- * Clinical equipoise
 - * 2014 AHA/ACC/HRS guidelines: warfarin is reasonable when the $CHA_2DS_2VASc > 2$
 - KDIGO: routine anticoagulation for primary stroke prevention is not indicated

Meta-analysis: association of stroke with warfarin (vs none)

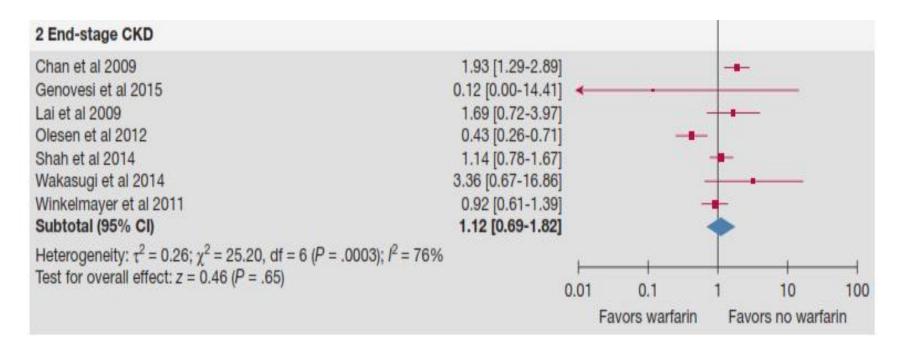


Figure 2 – Forrest plot of ischemic stroke/thromboembolism. CKD = chronic kidney disease.

Anticoagulation when eGFR<30?

Until we have RCT data physicians should individually balance the risk of stroke in each patient against their perceived magnitude of stroke prevention anticoagulants may provide

Should we use NOACs or warfarin to anticoagulate?

High risk population

- * Increased incidence of stroke
- Increased incidence of bleeding
- Increased prevalence of atrial fibrillation
- * NOACs (vs warfarin)
 - Improved safety profile (less bleeding)
 - Better stroke reduction

- Phase III trials
 - * NOACs vs warfarin
 - * We have no efficacy of warfarin when eGFR < 30 cc/min
- Despite FDA labels that provide dosing recommendations to eGFR= 15 cc/min and lower
- * Dosing recommendations below eGFR 30 cc/min
 - * Based mostly on PK modeling
 - * PK models poor predictors of outcomes

- * Chan et al. Circulation 2015; risk of bleeding referent to warfarin
 - * Dabigatran (HR=1.48; 95% Cl 1.21-1.81)
 - * Rivaroxaban (HR=1.38; 95% CI 1.03-1.83)
- * Guidelines
 - * 2014 AHA: warfarin when eGFR < 30 cc/min
 - * 2015 European Hearth Rhythm: refrain from NOACs when eGFR < 30 cc/min

* When can NOACs be used as first line therapy

- Calciphylaxis
- * Warfarin skin necrosis
- * Protein C/S deficiency
- * Which NOAC
 - * Apixaban 2.5 mg BID: label recommendation
 - * Check renal function q2-4 months, if eGFR> 30 cc/min

Monitoring CKD patients on a NOAC

* 5-year risk of GFR progression to <30 cc/min</p>

- * Base GFR=45-60 cc/min: 18%
- * Base GFR=30-45 cc/min: 25%
- * 5-year risk of acute kidney injury
 - * Base GFR=45-60 cc/min: 1%
 - * Base GFR=30-45 cc/min: 2.5%
- * Frequency of GFR monitoring
 - * GFR/10=months between creatinine testing

Discontinuation and reversal of NOACs

Non-urgent pre-op holding of NOACs

- * wait at least 3-4 half lives for the drug to be cleared from the body
- * Table 1: half live of NOAC by CrCl

CrCl (cc/min)	dabigatran	rivaroxaban	apixaban	edoxaban
>60	14h	8.5h	7.5h	8.6h
30-60	18h	9h	17.5h	9.4h
15-30	28h	9.5h	>17 . 5h	17h
<15	Unknown	Unknown	>17.5h	>17h

Non-urgent pre-op holding of NOACs

Table 2: timing of cessation of NOAC prior to procedure

CrCl (cc/min)	dabigatran	rivaroxaban	apixaban	edoxaban
>60	2 days	2 days	2 days	2 days
30-60	4 days	2 days	2 days	2 days
15-30	4 days	2 days	2 days	2 days
<15	5 days	4 days	4 days	unknown

Reversal of dabigatran

Clearance

time

2 days

4 days

4 days

5 days

 Four hour HD session clears 50% of dabigatran 	CrCl
* DDAVP	>60
* idarucizumab:	
 monoclonal antibody binds dabigatran 	30-60
 Normalizes thrombin time 	15-30
in 30 minutes6% risk of thrombotic event	<15

Reversal of Xa inhibitors

- * 4 factor prothrombin complex concentrate (4F-PCC)
- * Concentrated factor II, VII, IX, and X
- * What you need to know
 - Floods the coagulation system with high concentration of factors very quickly
 - Verwhelms Xa inhibition
 - * Much less volume then FFP
 - * Normalizes coagulation labs, no outcome data
 - * 1.4% risk of thrombotic complication

NOACs in acute kidney injury

- * GFR estimating formulas are not valid during AKI
- Severe AKI associated with a decreased clearance of NOAC and potential drug bioaccumulation/bleeding
- * Consider holding NOACs in patients with severe AKI
- Consider reversal agents if patient is bleeding

Conclusion: advanced CKD and dialysis

- NOAC use is substantial and increasing
- * No trial data to support this practice
- * AHA and European Hearth Rhythm Association guidelines recommend warfarin
- * NOAC RCTs are needed for this vulnerable population