

Academic Medical Center

University of Amsterdam

Late Breaking Clinical Trial Vignettes

Martin C. Burke DO, FACOI

CorVita Science Foundation

&

Academic Medical Center, Amsterdam

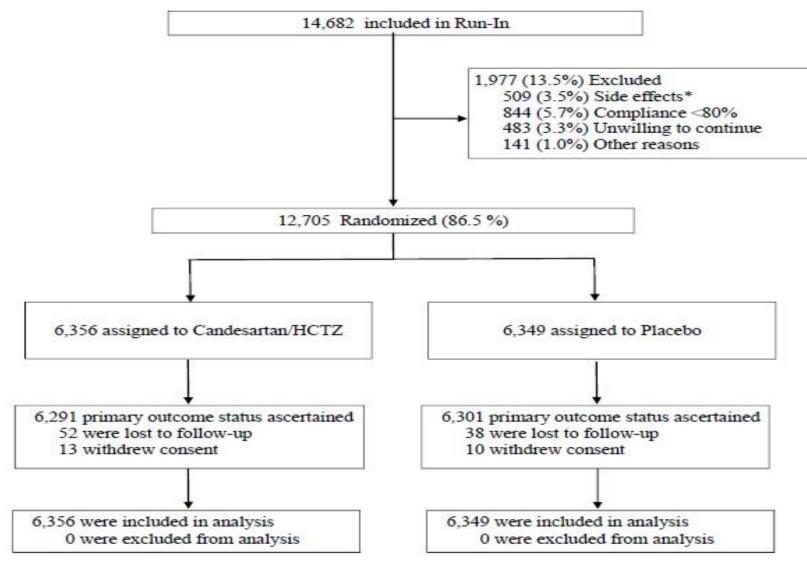
ORIGINAL ARTICLE

Blood-Pressure and Cholesterol Lowering in Persons without Cardiovascular Disease

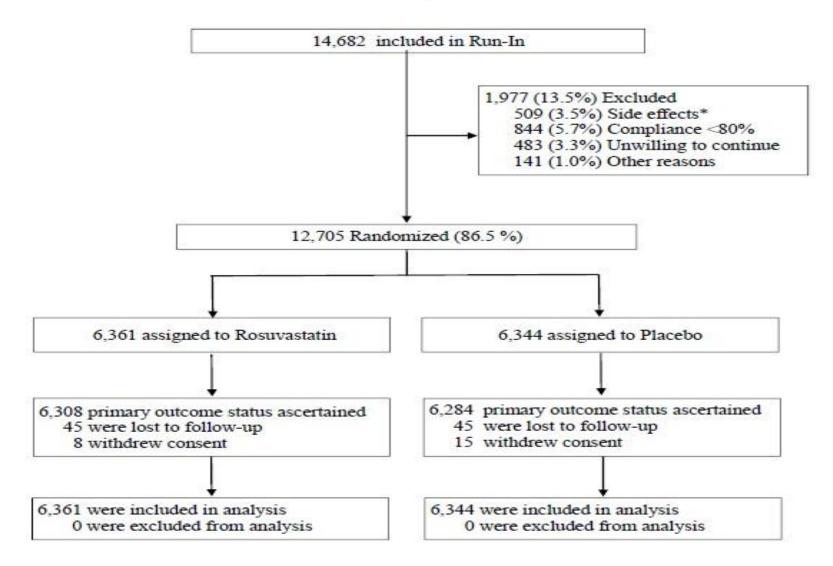
Salim Yusuf, M.B., B.S., D.Phil., Eva Lonn, M.D., Prem Pais, M.D., Jackie Bosch, Ph.D., Patricio López-Jaramillo, M.D., Ph.D., Jun Zhu, M.D., Denis Xavier, M.D.,
Alvaro Avezum, M.D., Ph.D., Lawrence A. Leiter, M.D., Leopoldo S. Piegas, M.D., Ph.D., Alexander Parkhomenko, M.D., Ph.D., Matyas Keltai, M.D., Ph.D.,
Katalin Keltai, M.D., Ph.D., Karen Sliwa, M.D., Ph.D., Irina Chazova, M.D., Ph.D., Ron J.G. Peters, M.D., Ph.D., Claes Held, M.D., Ph.D., Khalid Yusoff, M.D.,
Basil S. Lewis, M.D., Petr Jansky, M.D., Kamlesh Khunti, M.D., Ph.D.,
William D. Toff, M.D., Christopher M. Reid, Ph.D., John Varigos, B.Sc.,
Jose L. Accini, M.D., Robert McKelvie, M.D., Ph.D., Janice Pogue, Ph.D.,*
Hyejung Jung, M.Sc., Lisheng Liu, M.D., for the HOPE-3 Investigators†

HOPE-3- Background

- Investigators evaluated the effects of a MODERATE DOSE OF A POTENT STATIN VS PLACEBO, and
- A FIXED COMBINATION OF MODERATE DOSES OF AN ARB DIURETIC VS PLACEBO, and THE COMBINATION OF BOTH TREATMENTS VS DUAL PLACEBO on the prevention of major cardiovascular events.
- Both systolic blood pressure and low density lipoprotein (LDL) cholesterol show graded associations with cardiovascular disease.
- This profile accounts for two thirds of the population-attributable risk of cardiovascular disease.


TRIAL DESIGN AND OVERSIGHT

- The HEART OUTCOMES PREVENTION EVALUATION (HOPE)–3 trial is a multicenter, long-term, international, double-blind, randomized, placebocontrolled trial with a 2-by-2 factorial design among persons who did not have cardiovascular disease and who were at intermediate risk (defined as an annual risk of major cardiovascular events of approximately 1%).
- Conducted at 228 centers in 21 countries.


Figure S1: CONSORT Diagram for the Candesartan/HCTZ versus Placebo Comparison

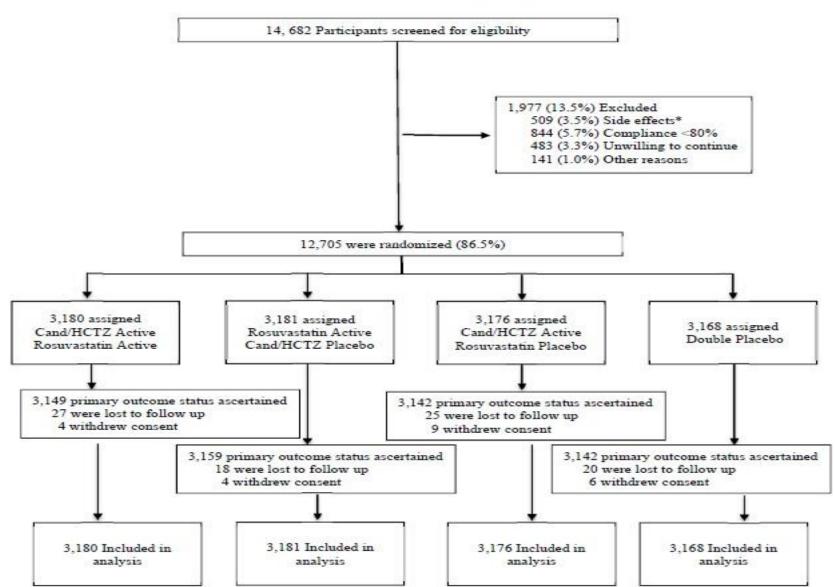

Figure S2: CONSORT Diagram for the Rosuvastatin versus Placebo Comparison

Figure S3: CONSORT Diagram for the Double Active versus Double Placebo Comparison

Table S1: The Heart Outcomes Prevention Evaluation (HOPE) - 3 Trial Design (N=12,705)

Demonstation	Candesart	Rosuvastatin		
Rosuvastatin	Active	Placebo	Margins Rosuvastatin Active n=6,361	
Active	Rosuvastatin Active/ Candesartan/HCTZ Active n=3,180	Rosuvastatin Active/ Candesartan/HCTZ Placebo n=3,181		
Placebo	Rosuvastatin Placebo/ Candesartan/HCTZ Active n=3,176	Rosuvastatin Placebo/ Candesartan/HCTZ Placebo n=3,168	Rosuvastatin Placebo n=6,344	
Candesartan/HCTZ Margins	Candesartan/HCTZ Active n=6,356	Candesartan/HCTZ Placebo n=6,349		

HCTZ=hydrochlorothiazide

TRIAL PROCEDURES

- Eligible persons entered a single-blind run-in phase, during which they received both active treatments for 4 weeks.
- Participants who adhered to the regimen and who did not have an unacceptable level of adverse events were randomly assigned to a fixed combination of CANDESARTAN (16 mg per day) and HYDROCHLOROTHIAZIDE(12.5 mg per day) or placebo and to ROSUVASTATIN(10 mg per day) or placebo.

Follow Up

- Follow-up visits occurred at 6 weeks and 6 months after randomization and every 6 months thereafter.
- Blood pressure was recorded at each visit in the first year and then annually.
- Lipid levels were measured at baseline in all participants and at 1 year, at 3 years, and at the end of the trial.

• There were two co-primary outcomes:

 the composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke.
 the composite of these events plus resuscitated cardiac arrest, heart failure, or revascularization.

 The secondary outcome was the composite of events comprising the second co-primary outcome plus angina with evidence of ischemia.

ADHERENCE TO TRIAL DRUGS

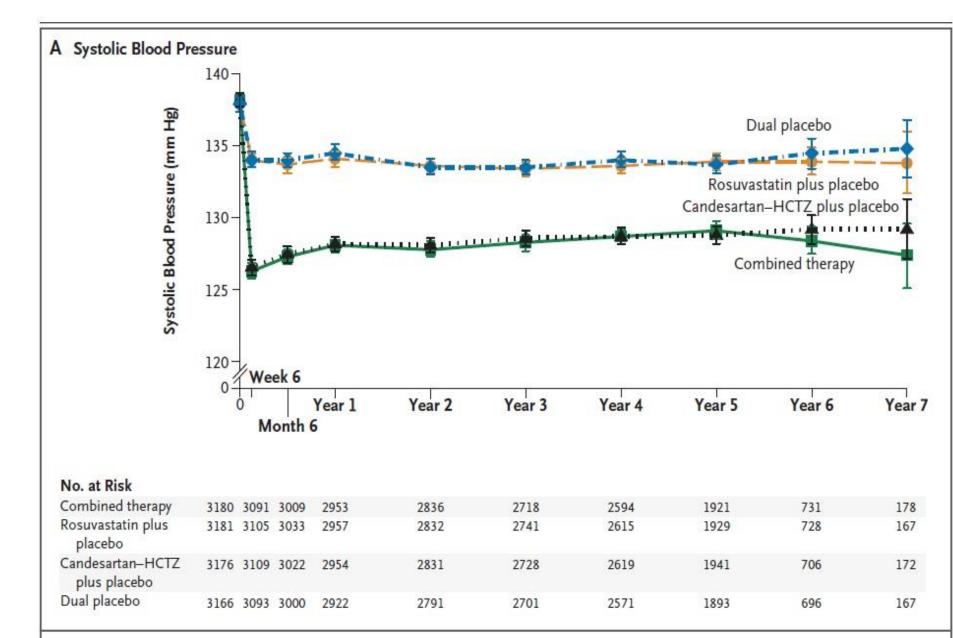
Table S3: Adherence to Study Drug and Open Label Use of ARBs, ACE-Is and Thiazides in the Candesartan/HCTZ and Placebo Groups

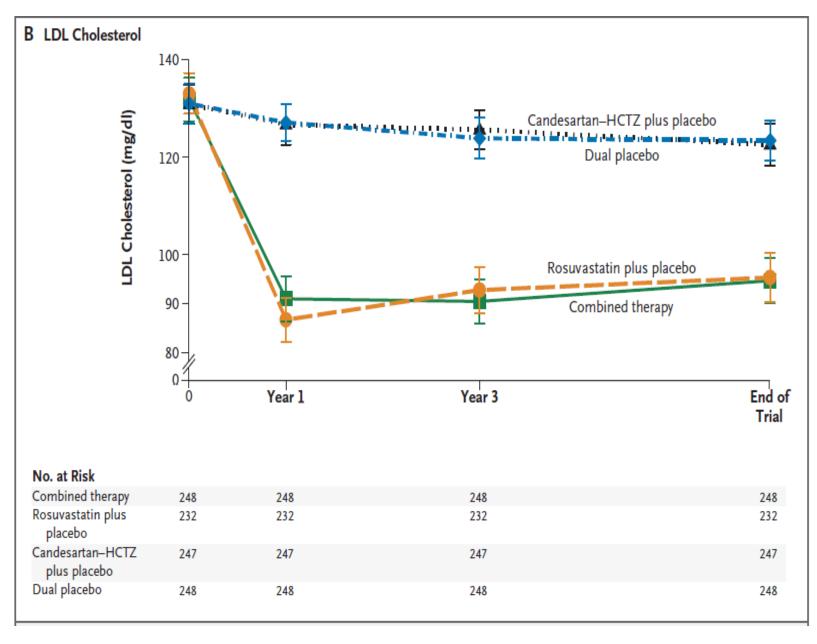
A. Candesartan

			Car	ndesartan/HCTZ	5		
		On Study Drug		On Open Label			
Visit Eligible	ble Cand/HCTZ N (%)	ARB N (%)	ACE-I N (%)	Thiazide N (%)	Other BP Lowering Drug(s)* N (%)		
1 year	6314	5567(88.2)	14(0.2)	24(0.4)	1(0)	1 1 1 1 1	
2 years	6267	5374(85.8)	28(0.4)	41(0.7)	10(0.2)	1011(16.5)	
3 years	6205	5189(83.6)	45(0.7)	48(0.8)	15(0.2)	100	
4 years	6101	4967(81.4)	52(0.9)	59(1.0)	30(0.5)	24 N	
5 years	4854	3639(75.0)	60(1.2)	66(1.4)	30(0.6)	3 (#6)	
End	5990	4599(76.8)	93(1.6)	100 (1.7)	47(0.8)	1068(18.2)	

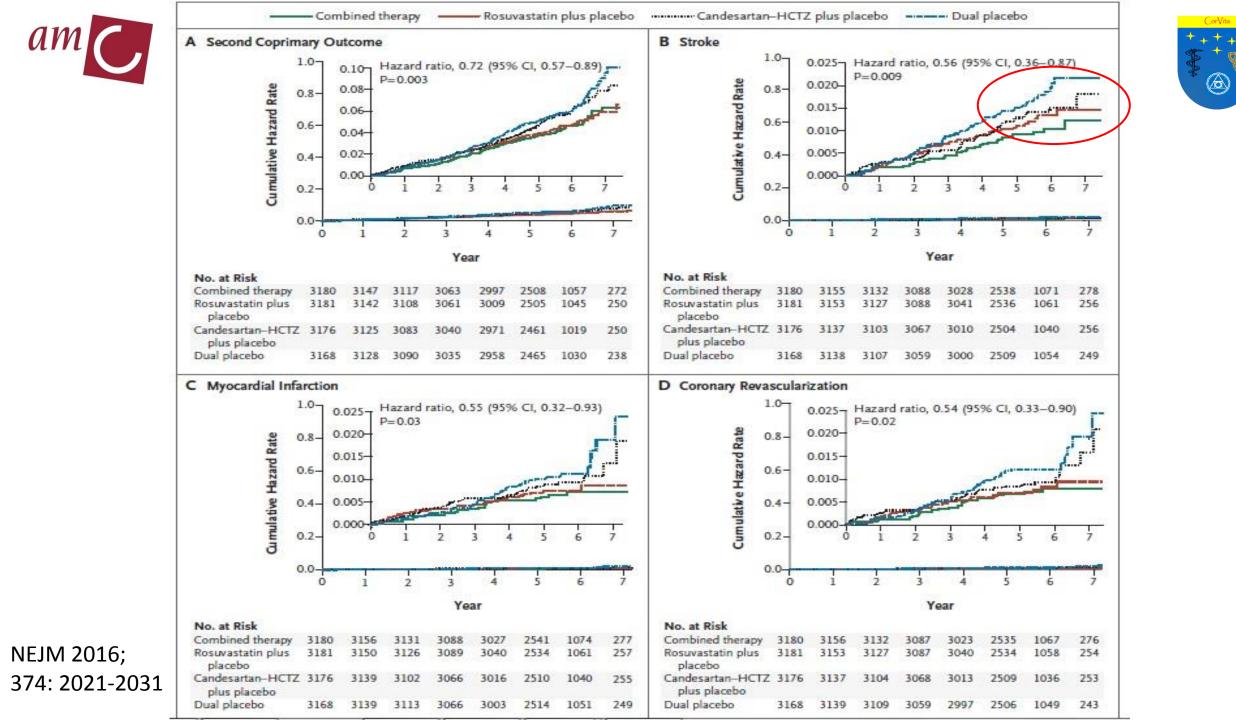
B. Placebo

		9	10	Placebo				
		On Study Drug	On Open Label					
Visit	⁷ isit Eligible	Eligible Cand/HCTZ Placebo N (%)	SS 75	ARB N (%)	ACE-I N (%)	Thiazide N (%)	Other BP Lowering Drug(s)* N (%)	
	6306	5545(87.9)	30(0.5)	48(0.8)	9(0.1)			
	6262	5359(85.6)	66(1.1)	67(1.1)	27(0.4)	1514(24.7)		
	6188	5161(83.4)	76(1.2)	82(1.3)	45(0.7)	1		
	6089	4953(81.3)	106(1.7)	102(1.7)	57(0.9)	-		
	4818	3588 (74.5)	104(2.2)	110(2.3)	57(1.2)	i		
	5985	4530(75.7)	146(2.4)	137(2.3)	79 (1.3)	1688(28.8)		




- On average , the mean SBP was lower by 6.2 mm Hg in the combined-therapy group than in the dual placebo group, the mean DBP was lower by 3.2 mm Hg, and the mean LDL cholesterol level was lower by 33.7 mg per deciliter .
- The difference in blood pressure was similar for participants assigned to candesartan— hydrochlorothiazide alone versus placebo.
- The difference in LDL cholesterol level was similar for participants assigned to rouvastatin alone versus placebo.

CorVita


Table 2. Primary, Secondary, and Other Outcomes.*

Outcome	Candesartan– Hydrochlorothiazide plus Rosuvastatin (N=3180)	Rosuvastatin plus Placebo (N=3181)	Candesartan– Hydrochlorothiazide plus Placebo (N=3176)	Placebo plus Placebo (N=3168)	Candesartan–Hydrochlorotl Rosuvastatin vs. Placebo pl	
					Hazard Ratio (95% CI)	PValue
Coprimary outcomes - no. (%)						
First coprimary outcome	113 (3.6)	122 (3.8)†	147 (4.6)‡	157 (5.0)	0.71 (0.56-0.90)	0.005
Second coprimary outcome	136 (4.3)	141 (4.4)∬	176 (5.5)¶	187 (5.9)	0.72 (0.57-0.89)	0.003
Secondary outcome — no. (%)	147 (4.6)	159 (5.0)	188 (5.9)	205 (6.5)	0.71 (0.57-0.87)	0.001
Components of the coprimary and secondary outcomes — no. (%)	.02 .95					
Death from cardiovascular causes	75 (2.4)	79 (2.5)	80 (2.5)	91 (2.9)	0.82 (0.60-1.11)	
Fatal or nonfatal myocardial infarction	21 (0.7)	24 (0.8)	31 (1.0)	38 (1.2)	0.55 (0.32-0.93)	
Fatal or nonfatal stroke	31 (1.0)	39 (1.2)	44 (1.4)	55 (1.7)	0.56 (0.36-0.87)	
Resuscitated cardiac arrest	1 (<0.1)	3 (0.1)	1 (<0.1)	3 (0.1)	0.33 (0.03-3.18)	
Revascularization	27 (0.8)	29 (0.9)	37 (1.2)	45 (1.4)	0.59 (0.37-0.95)	
Heart failure	10 (0.3)	11 (0.3)	11 (0.3)	18 (0.6)	0.55 (0.25-1.19)	
Angina with objective evidence of ischemia	25 (0.8)	31 (1.0)	26 (0.8)	38 (1.2)	0.65 (0.39-1.08)	
Other outcomes	10.00					
Death from any cause — no. (%)	163 (5.1)	171 (5.4)	179 (5.6)	178 (5.6)	0.91 (0.73-1.12)	
New-onset diabetes — no./total no. (%)	123/2982 (4.1)	109/3001 (3.6)	113/2984 (3.8)	113/2999 (3.8)	1.09 (0.85-1.41)	
Hospitalization — no. (%)**						
For cardiovascular causes	141 (4.4)	140 (4.4)	178 (5.6)	191 (6.0)	0.73 (0.59-0.91)	0.005
For noncardiovascular causes	463 (14.6)	418 (13.1)	436 (13.7)	443 (14.0)	1.04 (0.92-1.19)	0.52
First and recurrent events of the second copri- mary outcome†↑						
No. of participants with ≥1 event	136	141	176	187		
No. of participants with ≥2 events	29	39	30	59		
No. of participants with ≥3 events	2	4	3	13		
Total no. of events	169	184	211	262	0.66 (0.52–0.84)	0.001

NEJM 2016; 374: 2021-2031

* The first coprimary outcome was the composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke; the second coprimary outcome was the composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, resuscitated cardiac arrest, heart failure, or revascularization; and the secondary outcome was the composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, resuscitated cardiac arrest, heart failure, revascularization, or angina with objective evidence of ischemia. CI denotes confidence interval.

- No significant differences between the combined-therapy group and the dual placebo group were seen in the rate of new-onset diabetes, renal dysfunction, syncope, liverfunction abnormalities, eye problems, or cancers.
- The rates of muscle weakness or pain and of dizziness were higher in the combined-therapy group than in the dual-placebo group.
- These effects were reversible by temporary is continuation of the trial drug.

True Prevention

- Investigators approach of selecting persons on the basis of age and easily measured risk factors meant that neither complex screening nor blood tests are required to initiate treatment with low doses of combination therapy.
- Trial included persons of diverse racial and ethnic groups from 21 countries with broadly consistent benefits and safety.

CONCLUSION

 Treatment with fixed doses of rouvastatin and two antihypertensive agents was associated with a significantly lower risk of cardiovascular events than the risk with placebo among intermediate-risk persons without previous cardiovascular disease.

The Third DANish Study of Optimal Acute Treatment of Patients with ST-segment Elevation Myocardial Infarction: DEFERred stent implantation in connection with primary PCI: DANAMI 3-DEFER

Henning Kelbæk, MD, DMSci Roskilde Hospital & Rigshospitalet Zealand & Capitol Regions Denmark

Lancet 2016; 387(10034): 2199-2206

Deferred versus conventional stent implantation in patients @ with ST-segment elevation myocardial infarction (DANAMI 3-DEFER): an open-label, randomised controlled trial

Henning Kelbæk, Dan Eik Høfsten, Lars Køber, Steffen Helqvist, Lene Kløvgaard, Lene Holmvang, Erik Jørgensen, Frants Pedersen, Kari Saunamäki, Ole De Backer, Lia E Bang, Klaus F Kafoed, Jacob Lønborg, Kiril Ahtarovski, Niels Vejlstrup, Hans E Bøtker, Christian J Terkelsen, Evald H Christiansen, Jan Ravkilde, Hans-Henrik Tilsted, Anton B Villadsen, Jens Aarøe, Svend E Jensen, Bent Raungaard, Lisette O Jensen, Peter Clemmensen, Peer Grande, Jan K Madsen, Christian Torp-Pedersen, Thomas Engstrøm

Summary

Background Despite successful treatment of the culprit artery lesion by primary percutaneous coronary intervention (PCI) with stent implantation, thrombotic embolisation occurs in some cases, which impairs the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). We aimed to assess the clinical outcomes of deferred stent implantation versus standard PCI in patients with STEMI.

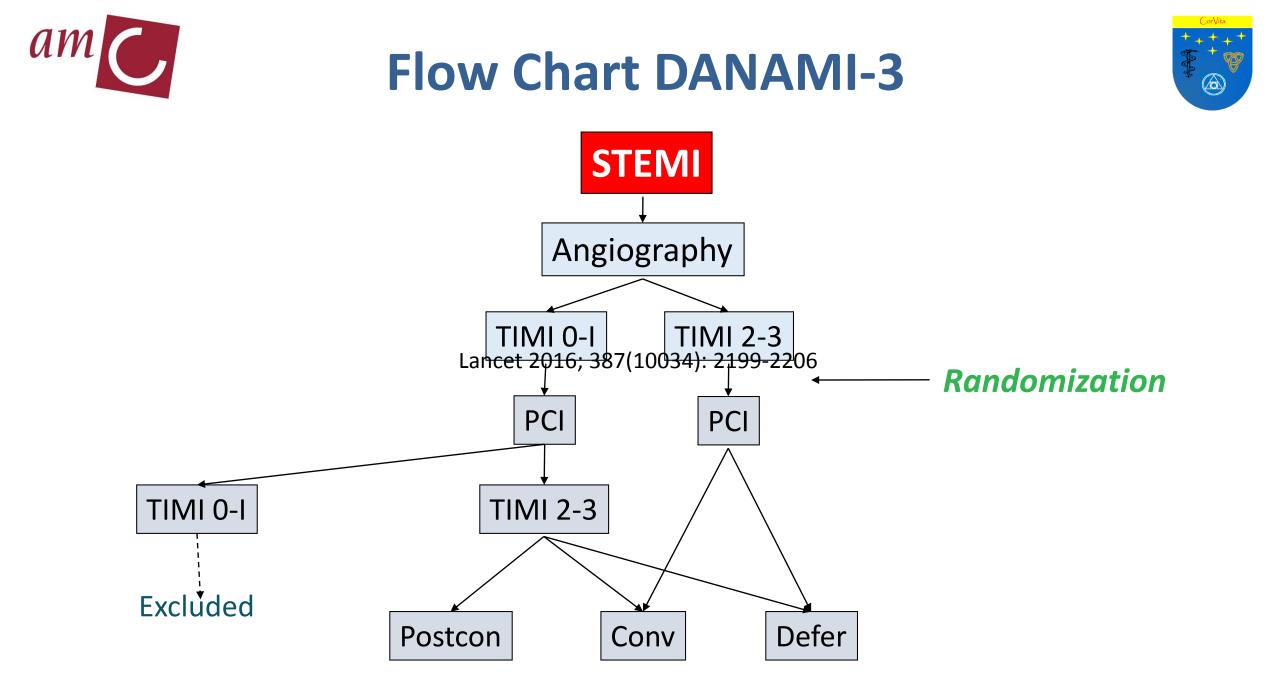
Methods We did this open-label, randomised controlled trial at four primary PCI centres in Denmark. Eligible patients (aged >18 years) had acute onset symptoms lasting 12 h or less, and ST-segment elevation of 0.1 mV or more in at least two or more contiguous electrocardiographic leads or newly developed left bundle branch block. Patients were

Published Online April 3 2016 http://dx.doi.org/10.1016/ S0140-6736(16)30072-1 See Online/XXX http://dx.doi.org/10.1016/Pll Department of Cardiology, Roskilde Hospital, Roskilde, Denmark (H Kelbæk MD);

Aim of DANAMI-3-DEFER study

To evaluate whether the prognosis of STEMI patients treated with pPCI can be improved by Lancet 2016: 387(10034): 2199-2206 improved by deferred stent implantation

Participants


Inclusion criteria:

- •chest pain of <12 hours' duration</p>
- •ST-segment elevation > 0.1 mV in at least 2 contiguous leads

Exclusion criteria

Lancet 2016; 387(10034): 2199-2206

- •Known intolerance of contrast media, anticoagulant or DAPT
- unconsciousness or cardiogenic shock
- •stent thrombosis
- indication for acute CABG
- •increased bleeding risk

A composite of:

- All cause mortality
- Hospitalization for heart failure
- Re-infarction
- Target vessel revascularization

DEFER:

- Minimal acute manipulation to restore stable flow in IRA
- Stent implantation 48 hours later

Lancet 2016; 387(10034): 2199-2206

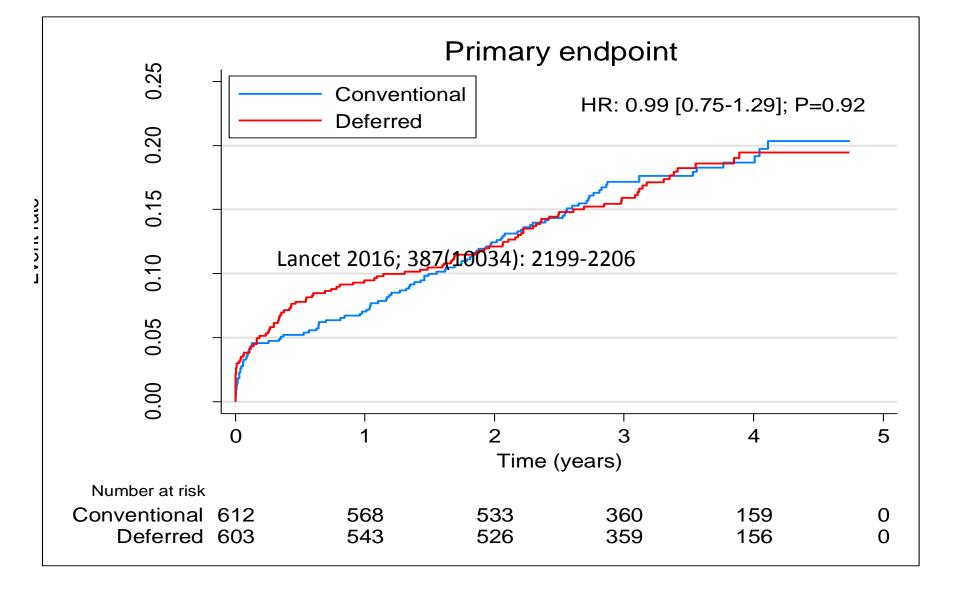
Conventional PCI:

Immediate stent implantation

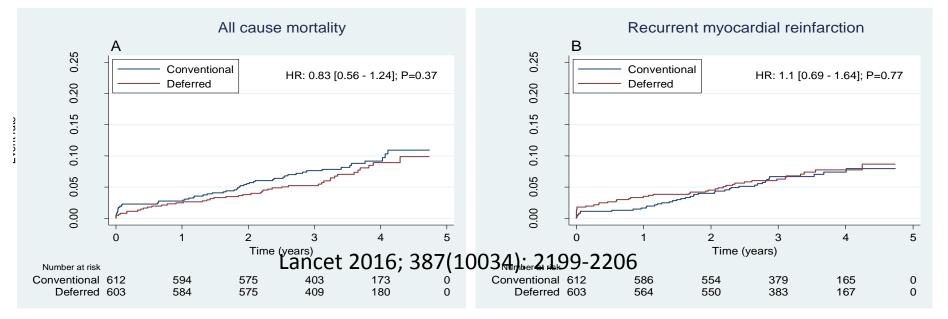
Procedural Data

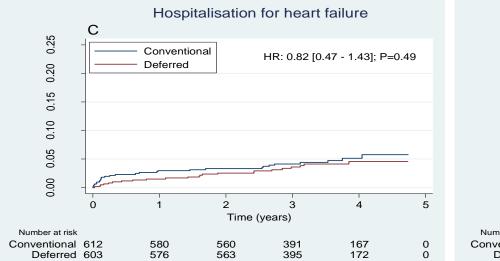
	Conventional (n = 612)	DEFER (n = 603)
Median stent diameter (mm)	3.5	3.5
Median stent length (mm)	22	18 *
No stenting	3%	15%*
Use of GP-inhibitor or Bivalirudin	92%	93%
Thrombus aspiration	58%	63%
TIMI flow before PCI**		
0 - 1 Lancet 2016; 387(;	10034): 2 <u>19</u> 9-2206	38%
2 - 3	62%	62%
TIMI flow after PCI**		
0 - 1	1.0%	1.0%
2 - 3	99%	99%
* P < 0.001 ** self-reported		

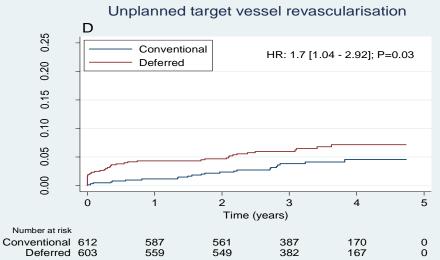
Clinical Status at Discharge



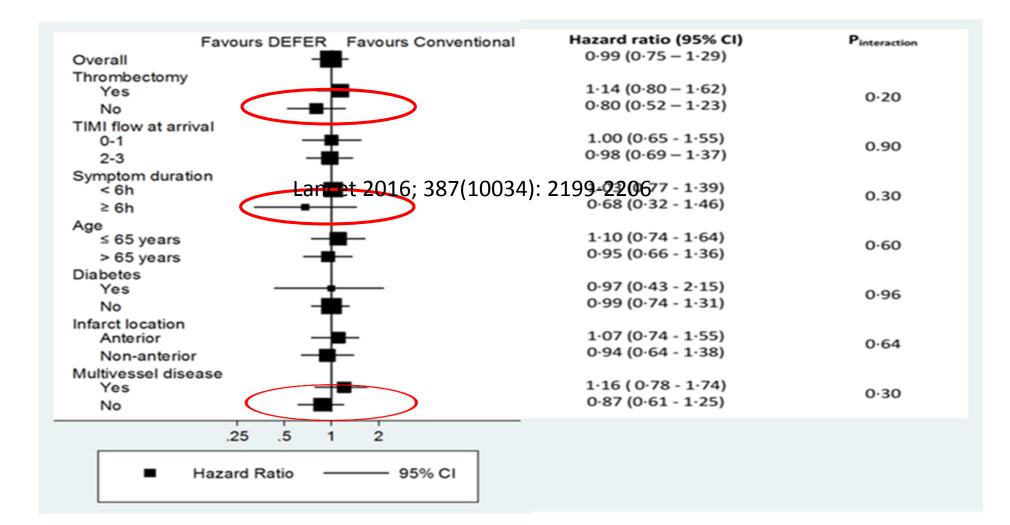
	Conventional (n = 612)	DEFER (n = 603)
Killip Class II - IV at any time	7%	7%
Median LVEF	50%	50%
Medical treatment at discharge		
Antiplatelet drug Lancet 2016; 387(1	0034): 2199-2206	
Aspirin	98%	98%
Clopidogrel /Prasugrel/Ticagrelor	99%	99%
Statin	98%	98%
Betablocker	90%	92%
ACE inhibitor or ARB	44%	41%


Primary Endpoint





Components of the primary endpoint



Subgroup analysis

Left ventricular ejection fraction (LVEF) at 18 months					
	Conventional	DEFER	Р		
Lancet 2016; 387	(10034): 2199-22	06			
Median LVEF	57%	60%	0.04		
No of patients with LVEF ≤45%	18%	13%	0.05		

Procedure-related MI, bleeding *, contrast-induced nephropathy or stroke occurred in

28 (5%) patients in the conventional group and Lancet 2016; 387(10034): 2199-2206
27 (4%) in the DEFER group

* Requiring blood transfusion or surgical intervention

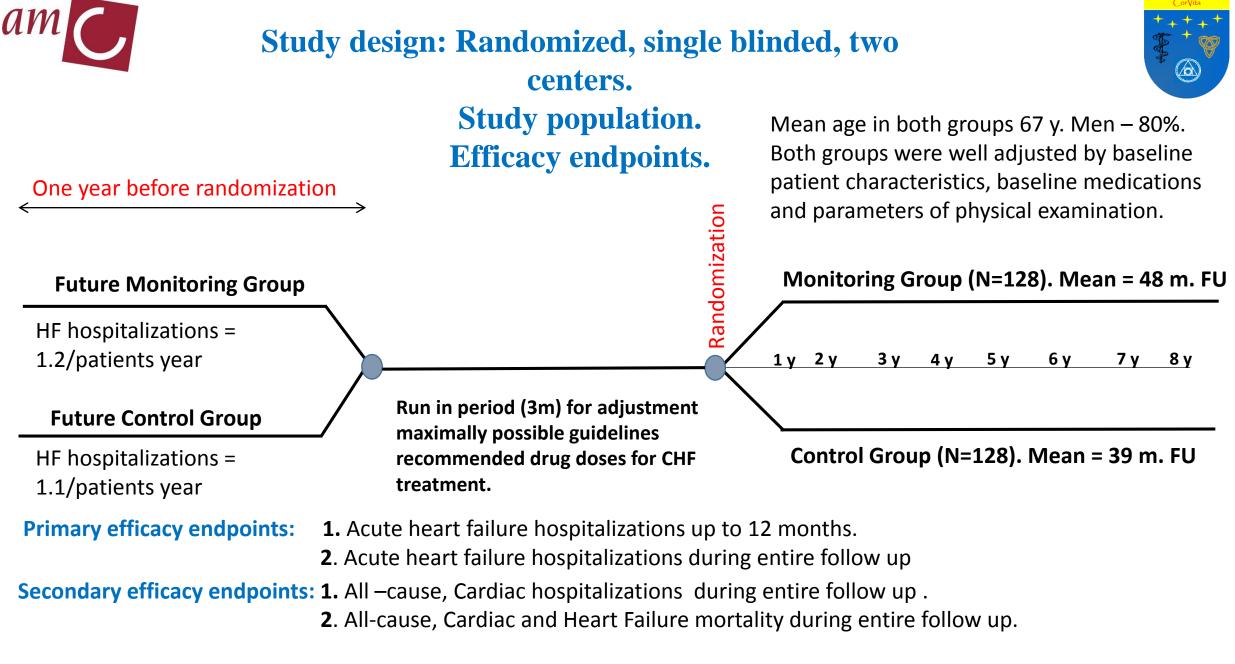
Conclusions

Deferred stent implantation in patients with STEMI did not reduce the risk of death, heart failure, or reinfarction compared with standard immediate stent implantation. Lancet 2016; 387(10034): 2199-2206

Left ventricular function and target vessel revascularization is slightly better after deferred stent implantation.

Non-invasive Lung IMPEDANCE-Guided Preemptive Treatment in Chronic Hear Failure Patients: a Randomized Controlled Trial (IMPEDANCE-HF trial)

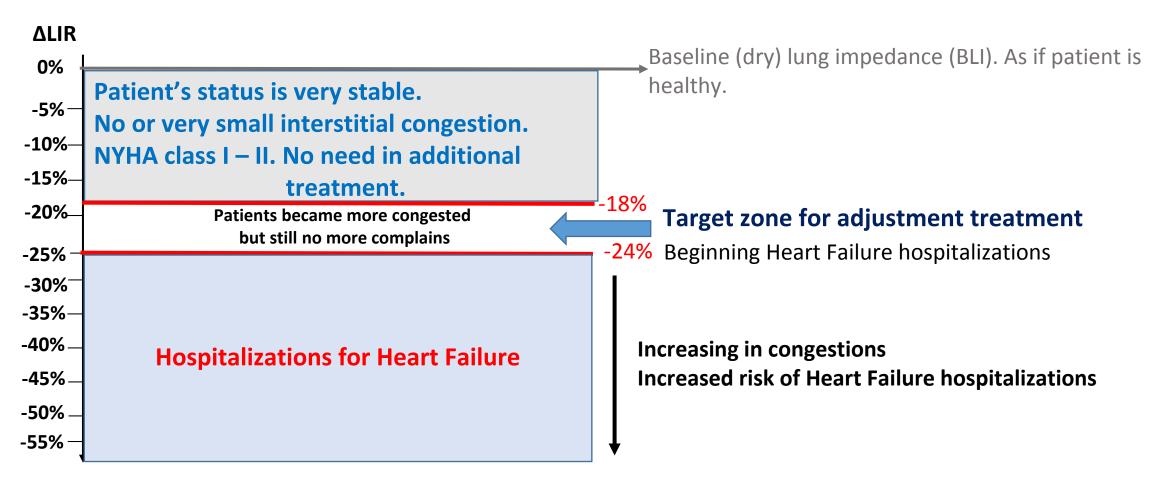
Michael Kleiner Shochat, MD, BSc, PhD^a, Avraham Shotan, MD^a, David S Blondheim, MD^a, Mark Kazatsker, MD^a, Iris Dahan, MSIT^a, Aya Asif, MD^a, Yoseph Rozenman, MD^b, Ilia Kleiner, MD^c, Jean Marc Weinstein, MBBS, FRCP^c, Aaron Frimerman, MD^a, Lubov Vasilenko, MD^a, Simcha R Meisel, MD, MSc^a


^aHeart Institute, Hillel Yaffe Medical Center, Hadera, Rappaport School of Medicine, Technion, Haifa, Israel; ^bCardiovascular Institute, Wolfson Medical Center, Holon, Sackler Faculty of Medicine, Tel-Aviv University, Israel, ^cCardiology Department, Soroka University Medical Center, Beer Sheva.

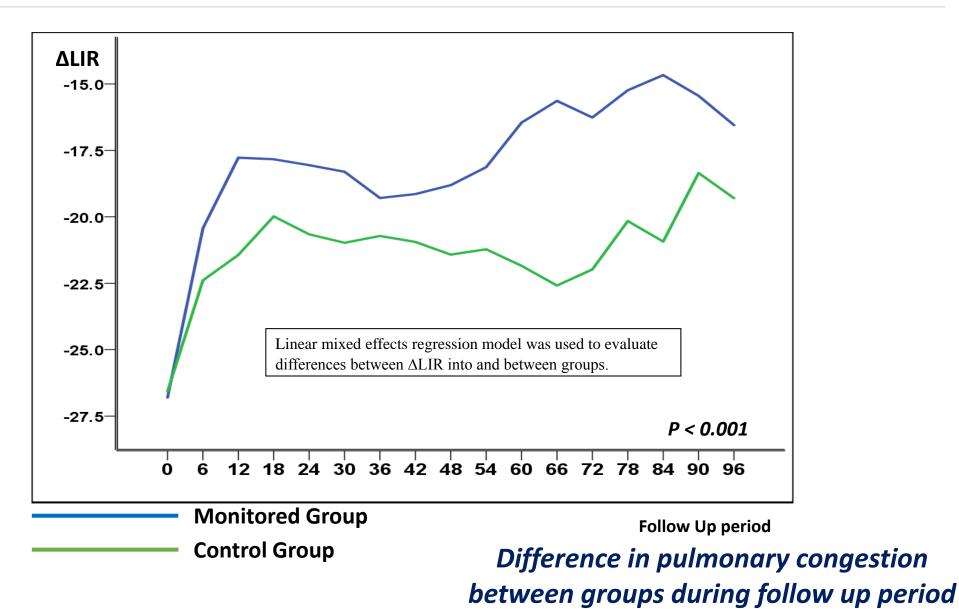
American College of Cardiology. Chicago. Late Braking Clinical Trial Session. Apr.04. 2016

Presenter - Michael Kleiner Shochat

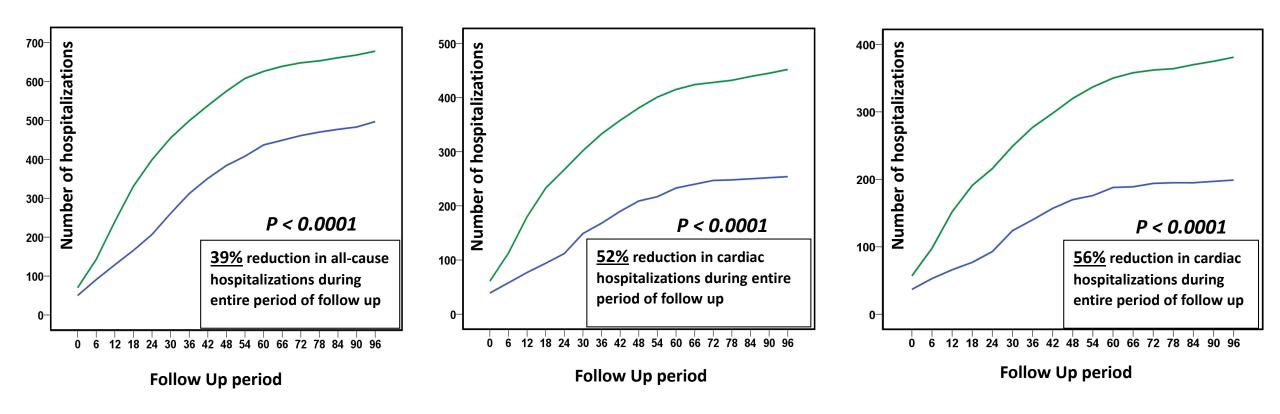
Now Published in the Journal of Cardiac Failure 2016 On Line


Conflict of interest: Michael Kleiner Shochat is a co-founder and member of the board of directors of the RSMM Company that manufactured and supplied the devices for the study.

Strategy of drug adjustment



(ΔLIR) = [current LI/BLI)-1]

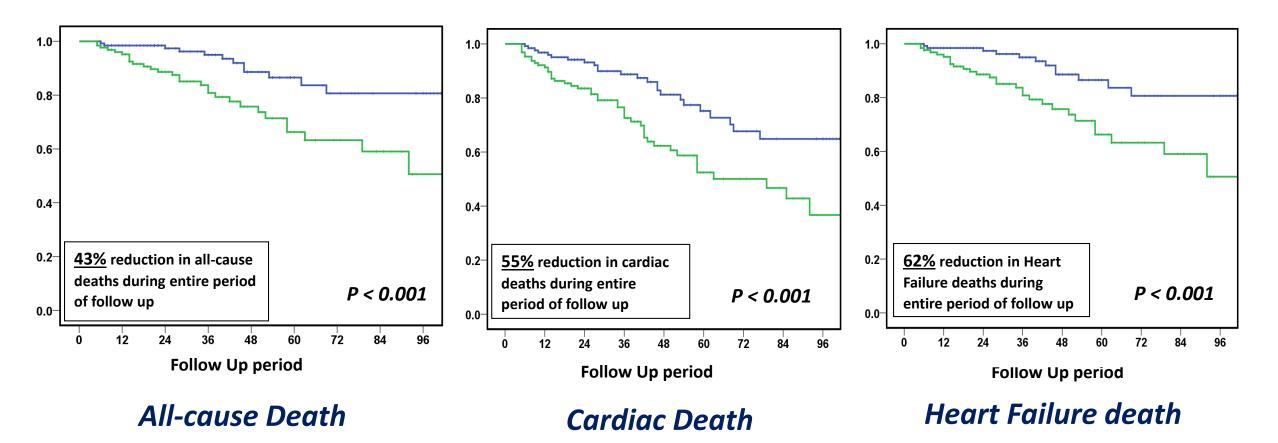


Hospitalizations

All-cause Hospitalizations

Cardiac Hospitalizations

Heart Failure Hospitalizations


Method of statistics: Cox regression analyses

Mortality

Method of statistics: Kaplan Meyer analyses

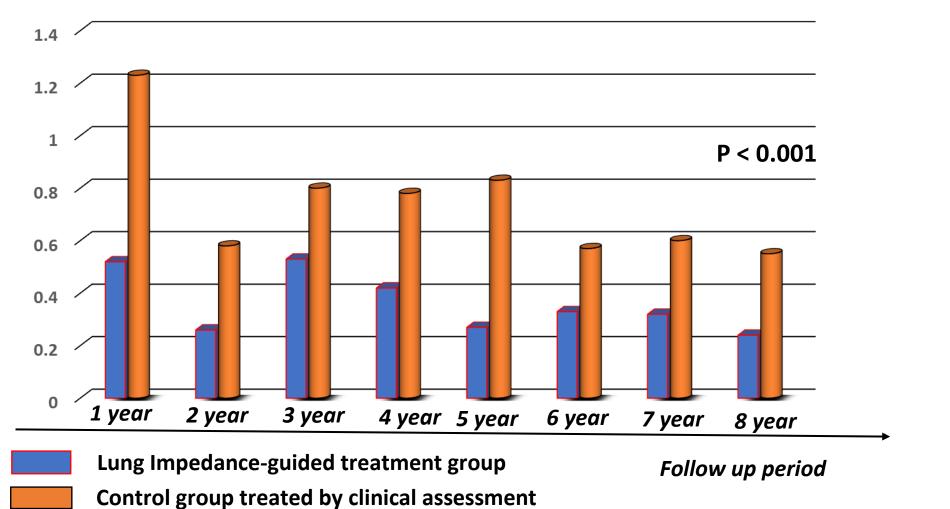


TABLE Drug modifications during entire follow up						
Medications	Monitored Group	Control Group	р	Monitoring /Control group. Ratio of drug adjustment		
	Rate of cha	anges in medical th	erapy			
Total	3166 (6.2)†	1244 (3.0)†	<0.05	2.1 times		
Diuretics	1530 (48%)‡	515 (42%)‡	<0.05			
Diuretics	1530 (3.0)†	515 (1.3)†	<0.05	2.3 times		
Beta Blockers	792 (25%)‡	303 (24%)‡	<0.05			
Beta Blockers	792 (1.6)†	303 (0.7) †	<0.05	2.3 times		
ACE inh /ARB	410 (13%)‡	142 (11%)‡	<0.05			
ACE inh /ARB	410 (0.8)†	142 (0.3)†	<0.05	2.7 times		
Nitrates	166 (5%)‡	78 (6%)‡	<0.05			
Nitrates	166 (0.3)†	78 (0.2) †	<0.05	1.5 times		
MRA	154 (5%)‡	144 (12%)‡	NS			
MRA	154 (0.3)†	144 (0.4) †	NS	0.9 times		
Digoxin	114 (4%)‡	62 (5%)‡	<0.05			
Digoxin	114 (0.2)†	62 (0.15)†	<0.05	1.5 times		

Results

Conclusions

Data of "IMPEDANCE-HF" trial shows that Lung Impedance guided treatment in compare with treatment based on clinical assessment of HFrEF patients:

Hospitalizations (Primary endpoint)

Reduces rate of HF hospitalizations during first year by 58%.
 Reduces rate of HF hospitalizations during 4 years by 56%.

Hospitalizations (Secondary endpoint)

3. Reduces rate of all-cause hospitalizations during 4 years by 39%.

4. Reduces rate of cardiac hospitalization during 4 years by 52%.

5. Reduces rate of Non-cardiac hospitalization during 4 years by 9%, (p=0.6).

Deaths (Secondary endpoint)

7. Reduces rate of All-cause mortality during 4 years by 43%.

8. Reduces rate of Cardiac mortality during 4 years by 55%.

9. Reduces rate of Heart Failure mortality during 4 years by 62%.

10. No changes in Non-cardiac mortality during 4 years.

Non-invasive Lung Impedance technology is enough sensitive to detect a very early stage of evolving pulmonary congestion and Lung Impedance-guided treatment is reliable for improving hospitalization and survival of Heart Failure patients.

Thank you very much for attention!