NUTRITION IN MEDICINE: CALORIES OR THERAPEUTIC MODALITY

AMERICAN COLLEGE OF OSTEOPATHIC INTERNISTS

MATTHEW BERHTOLD MD, FARP, FARGE, FARG, AGAF DIVISION OF GASTROENTEROLOGY UNIVERSITY OF MISSOURI – COLUMBIA

OCTOBER 80, 2010

AMERICAN COLLEGE OF OSTEOPATHIC INTERNISTS NATIONAL MEETING

Nestle Nutrition Institute Speaker & Consultant

I will not discuss off label use or investigational use in my presentation

75 YEARS OF DEDICATION TO OUR MEMBERS

Matthew Beahtold MD beahtoldm@health.missouri.edu

NUTRITIONAL IMPACT

WEIGHT LOSS > 35%

† RISK OF DEATH

PROTEIN STORAGE LOSS > 30%

FAT STORAGE LOSS > 70%

NUTRITIONAL IMPACT

CELIAC DISEASE

Gluten-Free Diet Folate, Fe, Fat-Soluble Vitamins Trace Minerals

CIRRHOSIS

Do Not Limit Protein Watch For Hypoglycemia Nutrition Improves Outcomes in Transplant

SHORT GUT SYNDROME

Maximize Nutrition Avoid Too Much CHO Ileal Adaptation

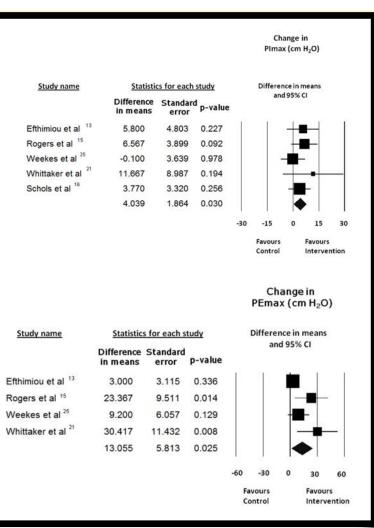
DUMPING SYNDROME

Frequent Small Meals Avoid Simple CHO Fluid Intake Separated From Meal

REFEEDING SYNDROME

Go Slow Watch Phosphorus

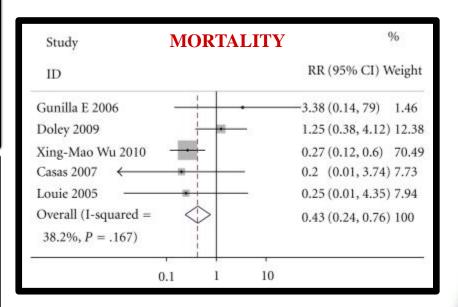
FOOD ALLERGIES


Just Say NO Supplements NUTRITIONAL IMPACT Meta-analysis 12 RCTs (n=448)

				Chan handgrip	ge in strength
Study name	Statistic	s for each s	tudy	Std diff in	
	Std diff in means	Standard error	p-value	and 9	5% CI
Efthimiou et al 13	1.071	0.572	0.061		┝╼╄╴│
Rogers et al 15	1.080	0.414	0.009		
Weekes et al 25	0.148	0.271	0.586	1 1 4	
Steiner et al 24	0.501	0.266	0.059	•	
	0.565	0.217	0.009		♦
				-3.0 -1.5	0 1.5 3.0
				Favours Control	Favours Intervention

Stable COPD

Dietary advice (1)


or Oral supplementation (10) vs Nothing or Enteral tube feeds (1)

NUTRITIONAL IMPACT PANGREATITIS

Study PANCREAS-I	RELATED	%
ID COMPLICA	ATIONS _{RR (95% CI)}	Weight
Petrov 2006	0.43 (0.28, 0.64)	32.05
Gunilla E 2006	• 2.54 (0.9, 7.16)	3.71
Doley 2009	1.07 (0.69, 1.65)	14.81
Xing-Mao Wu 2010	0.31 (0.19, 0.53)	38.15
Casas 2007	0.2 (0.03, 1.45)	4.94
Louie 2005	0.6 (0.21, 1.72)	
Overall (I-squared \bigcirc = 79.3%, P =.000)	0.56 (0.44, 0.71)	
= 79.5%, P =.000)		
0.1	1 10	
0.1	, ,	%
0.1	1 10	% Weight
0.1 Study MULTI-OR	1 10 GAN FAILURE	
0.1 Study MULTI-OR ID	1 10 GAN FAILURE RR (95% CI)	Weigh 26.68
0.1 Study MULTI-OR ID Petrov 2006	1 10 GAN FAILURE RR (95% CI) 0.4 (0.19, 0.84)	Weigh 26.68) 1.45
0.1 Study MULTI-OR ID Petrov 2006 Gunilla E 2006	1 10 GAN FAILURE RR (95% CI) 0.4 (0.19, 0.84) 1.13 (0.07, 17.07)	Weigh 26.68) 1.45 53.64
0.1 Study MULTI-OR ID Petrov 2006 Gunilla E 2006 Xing-Mao Wu 2010	1 10 GAN FAILURE RR (95% CI) 0.4 (0.19, 0.84) 1.13 (0.07, 17.07) 0.23 (0.12, 0.45)	Weigh 26.68 1.45 53.64 3.87

Meta-analysis 6 RCTs (n=326) Predicted severe acute pancreatitis

 $EN \le 72$ hours vs TPN

NUTRITIONAL IMPACT PANCREATITIS

RCT (n=205) 19 Dutch Centers Predicted severe acute pancreatitis Apache II ≥ 8 Modified Glasgow Score ≥ 3 CRP > 150 mg/L

	Early Tube Feeding	On-Demand Tube Feeding	Risk Ratio	
Outcome	(N=101)	(N=104)	(95% CI)	P Value
Primary composite end point: infection or death — no. (%)	30 (30)	28 (27)	1.07 (0.79–1.44)	0.76
Secondary end points				
Infection — no. (%)†	25 (25)	27 (26)	0.97 (0.70-1.34)	0.87
Infected pancreatic necrosis	9 (9)	15 (14)	0.74 (0.43-1.26)	0.28
Bacteremia	17 (17)	18 (17)	0.98 (0.68-1.43)	1.00
Pneumonia	12 (12)	13 (12)	0.97 (0.63-1.50)	1.00
Death — no. (%)	11 (11)	7 (7)	1.27 (0.85–1.89)	0.33
Necrotizing pancreatitis — no. (%)‡	64 (63)	65 (62)	1.06 (0.77-1.47)	0.76
CT severity index∬	4±2	4±3	_	0.29
ICU admission after randomization — no. (%)	18 (18)	20 (19)	0.95 (0.66–1.38)	0.86
Mechanical ventilation — no. (%)	12 (12)	14 (13)	0.93 (0.60-1.44)	0.84
New-onset organ failure — no./total no. at risk (%)¶				
Single organ failure	26/67 (39)	31/73 (42)	0.92 (0.65-1.32)	0.73
Persistent single organ failure	10/67 (15)	10/73 (14)	1.05 (0.65-1.70)	1.00
Multiple organ failure	7/67 (10)	6/73 (8)	1.14 (0.67–1.95)	0.77
Persistent multiple organ failure	4/67 (6)	4/73 (5)	1.05 (0.51-2.14)	1.00

Nasoenteric tube feeds ≤ 24 hours vs Oral Diet/tube feeds @ 72 hours

NUTRITIONAL IMPACT PANCREATITIS

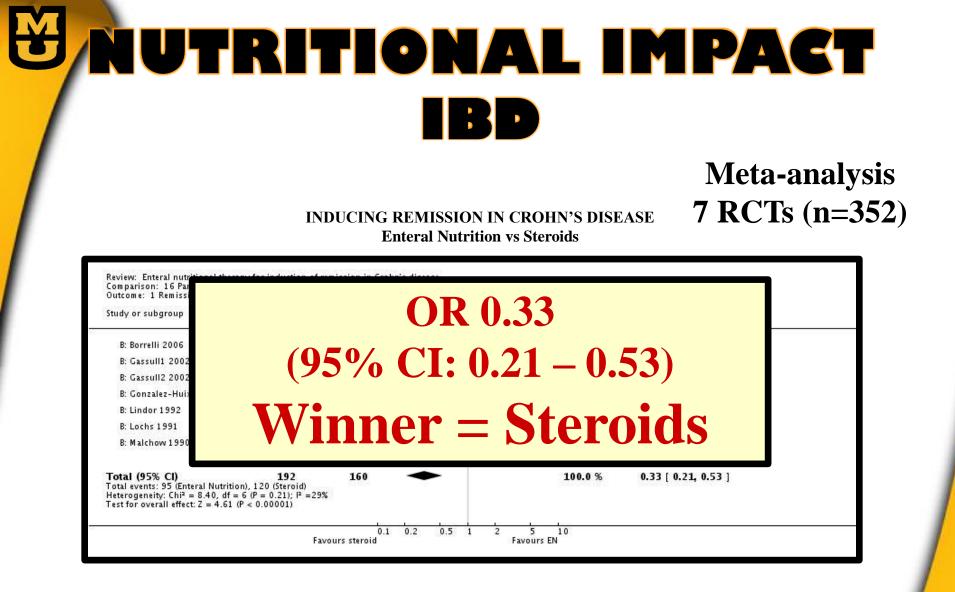
RCT (n=205)	
19 Dutch Centers	

Outcome	Early Tube Feeding (N=101)	On-Demand Tube Feeding (N=104)	Risk Ratio (95% CI)	P Value	
Primary composite end point: infection or death — no. (%)	30 (30)	28 (27)	1.07 (0.79–1.44)	0.76	
Secondary end points					
Infection — no. (%)†	25 (25)	27 (26)	0.97 (0.70-1.34)	0.87	
	0 (0)	15 (2.4)	0.74 (0.42.1.20)	0.00	

TYPE II STATISTICAL ERROR? LATE START OF EARLY GROUP FEEDING? SEVERITY SCALES ACCURATE?

Mechanical ventilation — no. (%)	12 (12)	14 (13)	0.93(0.60-1.44)	0.84
New-onset organ failure — no./total no. at risk (%)¶				
Single organ failure	26/67 (39)	31/73 (42)	0.92 (0.65–1.32)	0.73
Persistent single organ failure	10/67 (15)	10/73 (14)	1.05 (0.65–1.70)	1.00
Multiple organ failure	7/67 (10)	6/73 (8)	1.14 (0.67–1.95)	0.77
Persistent multiple organ failure	4/67 (6)	4/73 (5)	1.05 (0.51-2.14)	1.00

Nasoenteric tube feeds ≤ 24 hours vs Oral Diet/tube feeds @ 72 hours


NUTRITIONAL IMPACT IBD

Meta-analysis 7 RCTs (n=352)

INDUCING REMISSION IN CROHN'S DISEASE Enteral Nutrition vs Steroids

tudy or subgroup	Enteral Nutrition n/N	Steroid n/N	Odds Ratio M-H,Fixed,95% Cl	Weight	Odds Ratio M-H,Fixed,95% Cl	
B: Borrelli 2006	15/19	12/18	83 	4.2 %	1.88 [0.43, 8.20]	
B: Gassull1 2002	4/20	7/9 🕂		12.4 %	0.07 [0.01, 0.49]	
B: Gassull2 2002	12/23	8/10 🔶		8.6 %	0.27 [0.05, 1.57]	
B: Gonzalez-Huix '93	12/15	15/17 🔶		4.5 %	0.53 [0.08, 3.72]	
B: Lindor 1992	2/9	5/10 🔸		5.9 %	0.29 [0.04, 2.11]	
B: Lochs 1991	29/55	41/52		32.0 %	0.30 [0.13, 0.70]	
B: Malchow 1990	21/51	32/44 —	it. West	32.4 %	0.26[0.11, 0.62]	
otal (95% Cl) otal events: 95 (Enteral N eterogeneity: Chi ² = 8.4(est for overall effect: Z =), df = 6 (P = 0.21); l ² =		+	100.0 %	0.33 [0.21, 0.53]	

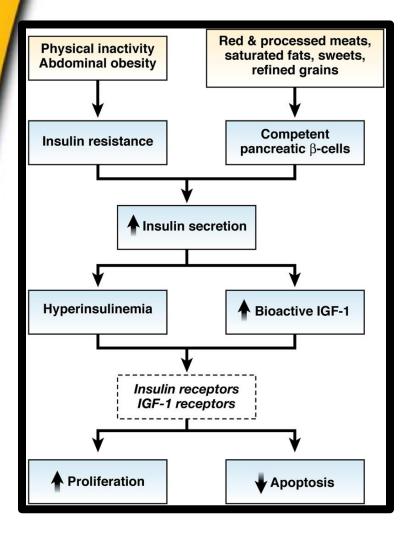
Dziechciarz P, et al. Aliment Pharmacol Ther 2007 Zachos M, et al. Cochrane Database Syst Rev 2008

Dziechciarz P, et al. Aliment Pharmacol Ther 2007 Zachos M, et al. Cochrane Database Syst Rev 2008

BD Weta-analysis5 RCTs (n=403)

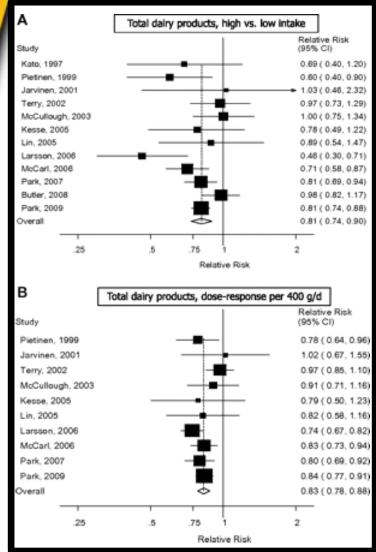
INDUCING AND SUSTAINING REMISSION IN CROHN'S DISEASE

	Favors ED + Infliximab		Favors Infliximab Alone		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Hirai et al - 2012	31	45	24	57	24.4%	3.04 [1.34, 6.92]	
Matsumoto et al - 2005	15	49	4	12	16.5%	D.88 [D.23, 3.39]	
Sazuka et al - 2012	23	29	22	45	13.2%	4.01 [1.37, 11.71]	
Tanaka et al - 2006	30	51	22	59	31.1%	2.40 [1.11, 5.18]	
Yamamoto et al - 2009	25	32	16	24	14.8%	1.79 [0.54, 5.89]	
Total (95% CI)		206		197	100.0%	2.43 [1.58, 3.74]	◆
Total events	124		88				
Heterogeneity: Chi# = 3.5	6, df = 4 (P = 0.47)	; P= 0%					
Test for overall effect: Z =	4.03 (P < 0.0001)		INDUCT	ION O	F RE	MISSION	0.01 0.1 1 10 100 Favors Infliximab Alone Favors EN + Infliximab


	Favors EN + Infl	iximab	Favors Infliximab Alone		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Hirai et al - 2012	31	45	24	57	46.5%	3.04 [1.34, 6.92]	
Sazuka et al - 2012	23	29	22	45	25.2%	4.01 [1.37, 11.71]	
Yamamoto et al - 2009	25	32	16	24	28.3%	1.79 [0.54, 5.89]	
Total (95% CI)		106		126	100.0%	2.93 [1.66, 5.17]	•
Total events	79		62				
Heterogeneity: Chi ² = 1.0 Test for overall effect: Z =				ISSIO	N \ 1	YEAR	
							Favors Infliximab Alone Favors EN + Infliximab

VS

Enteral nutrition therapy (elemental or polymeric formula, with or without low-fat diet restriction) with infliximab


Infliximab alone with no dietary manipulation

NUTRITIONAL IMPACT COLORECTAL CANCER

INCREASE RISK Red Meat Processed Meat Highly Refined Grains and Starches Sugars

NUTRITIONAL IMPACT COLORECTAL CANCER

Meta-analysis 12 Prospective Cohort Studies (n=1,170,942)

FUTURE IMPACT

Vitamin D Fiber Folic Acid Magnesium

Aune D, et al. Ann Oncol 2012

NUTRITIONAL ASSESSMENT

MEDICAL HISTORY

Nutritional deficiencies in diet Eating habits Food diary Dieting??? PHYSICAL EXAM BMI Ideal body weight (IBW) Present body weight (PBW) Deviation from average body weight over past 3-6 months **NUTRITIONAL ASSESSMENT**

ANTHROPOMORPHIC MEASUREMENTS HAND-HELD CALIPERS BODY MASS INDEX

BIOCHEMICAL MEASUREMENTS ALBUMIN PREALBUMIN TRANSFERRIN CREATININE

IMMUNOLOGIC MEASUREMENTS LYMPHOCYTE COUNT **NUTRITIONAL ASSESSMENT**

• $BMI = Weight (kg) / Height (m)^2$

BMI TABLE	Caucasians	Asians
Normal	< 25	< 23
Overweight	25 – 29.9	23 – 29.9
Obese	30 – 39.9	30 – 39.9
Severe Obesity	\geq 40	\geq 40

- Problems:
 - Muscle mass does not count:

Terrell Owens BMI = 6'3" and 224 lbs = 28 Dwayne Johnson (AKA The Rock) BMI = 6'5" and 260 lbs = 31

NUTRITIONAL ASSESSMENT GLOBAL ASSESSMENTS

Formulas

Harris-Benedict Equation Protein Assessment

Research Tools

Electric Impedence Testing Infared Refractance Densitometry

Indirect Calorimetry

Heat produced by oxidation Resting energy expenditure: Measured by ventilated hood over pt's head x 2 hrs $(O_2 \text{ and } CO_2 \text{ content})$

Subjective Global Assessment

NUTRITIONAL ASSESSMENT GLOBAL ASSESSMENTS

NO SINGLE TOOL IS AN ACCURATE PREDICTOR OF NUTRITIONAL STATUS

Heat produced by oxidation

Resting energy expenditure: Measured by ventilated hood over pt's head x 2 hrs $(O_2 \text{ and } CO_2 \text{ content})$

Subjective Global Assessment

	SUBJECTIVE GLOGAL ASSESSMENT
	(Select an appropriate category with a checkmark, or enter numerical value where indicated by "#"
	A. History
l	1. Weight change Overall loss in past 6 months: amount = # kg; percent loss = # Change in past 2 weeks: increase, no change, decrease.
	2. Dietary intake change (relative to normal)
	No change, Change duration = # weeks. type: suboptimal solid diet, full liquid diet hypocaloric liquids, starvation.
	 Gastrointestinal symptoms (that persisted for >2 weeks) none, nausea, vomiting, diarrhea, anorexia.
	4. Functional capacity No dysfunction (eg, full capacity), Dysfunction duration = # weeks. type: working suboptimally, ambulatory, bedridden.
	5. Disease and its relation to nutritional requirements
	Primary diagnosis (specify): no stress, low stress, low stress, high stress.
	B. Physical (for each trait specify: 0 = normal, 1+ = mild, 2+ = moderate, 3+ = severe).
	# loss of subcutaneous fat (triceps, chest) # muscle wasting (quadriceps, deltoids)
	# ankle edema
	# sacral edema #ascites
	C. SGA rating (select one) A = Well nourished B = Moderately (or suspected of being) malnourished C = Severely malnourished

Charney P. Nutr Clin Pract 1995

METHODS

ENTERAL FEEDING By Mouth Tube Feeding

PARENTERAL FEEDING

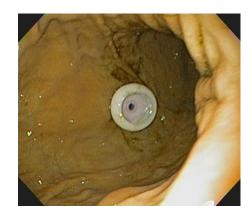
Total Parenteral Nutrition Peripheral Parenteral Nutrition

WHICH ONE? "If the gut works, use it!" - Stevan Whitt MD

BENEFIT

Strokes Head & Neck Cancers Life-Expectancy > Few Months

MAY NOT BENEFIT Alzheimer's Dementia


Roth. Biomedical Ethics Seminar 2007 Finucane, et al. J Am Med Dir Assoc 2007 Finucane, et al. JAMA 1999 Cervo, et al. Geriatrics 2006 Roth, et al. Stroke 2002

FAMILY ON FEEDING TUBES

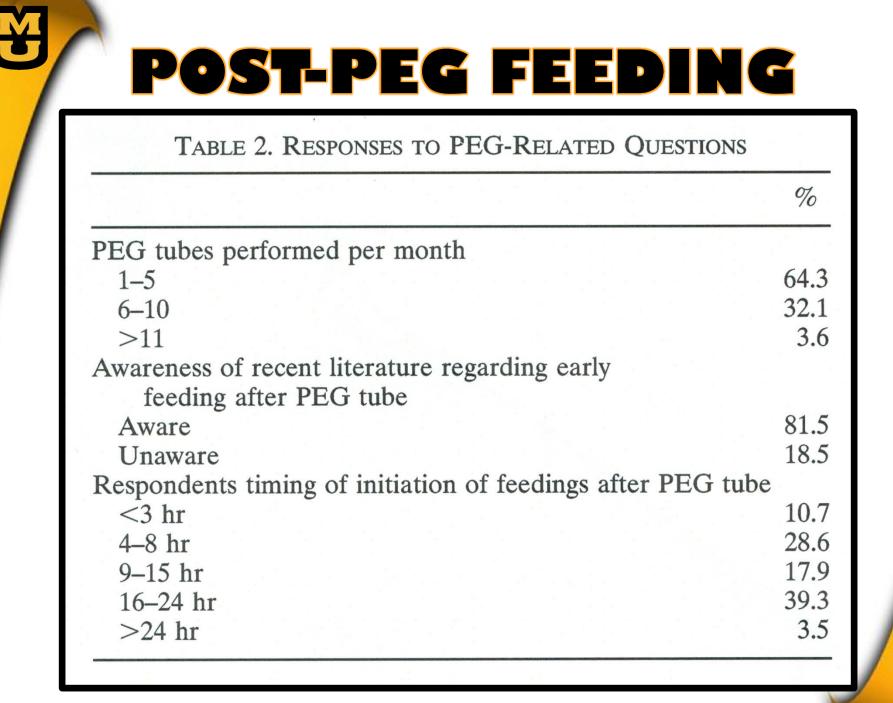
Improve nutrition and hydration Prevent aspiration pneumonia Improve or maintain function Improve survival Improve patient comfort

Roth. Biomedical Ethics Seminar 2007 Finucane, et al. J Am Med Dir Assoc 2007 Finucane, et al. JAMA 1999 Cervo, et al. Geriatrics 2006 Roth, et al. Stroke 2002

REALITY OF PEG TUBES

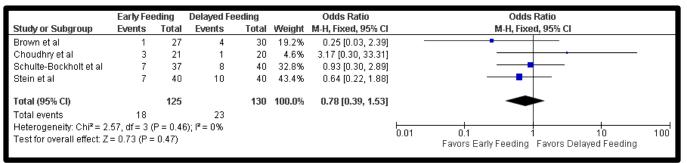
Nutritional status does not necessarily improve Diarrhea, clogging of tube, pulling out of tube Increased nutrients do not necessarily result in meaningful clinical outcomes Continued risk of aspiration

Survival rates same for PEG and spoon fed patients Mortality rates ^{2% to 27% at 30 days and 50% or more at 1 year} Restraints often required leading to discomfort and compromised autonomy Denied pleasure of eating Adverse effects with feeding tube due to complications


Roth. Biomedical Ethics Seminar 2007 Finucane, et al. J Am Med Dir Assoc 2007 Finucane, et al. JAMA 1999 Cervo, et al. Geriatrics 2006 Roth, et al. Stroke 2002 PEG COMPLICATIONS

Major Complications

Necrotizing SoftTissue InfectionBuried BumperSyndromeColocutaneousFistulaInadvertent PEGRemoval

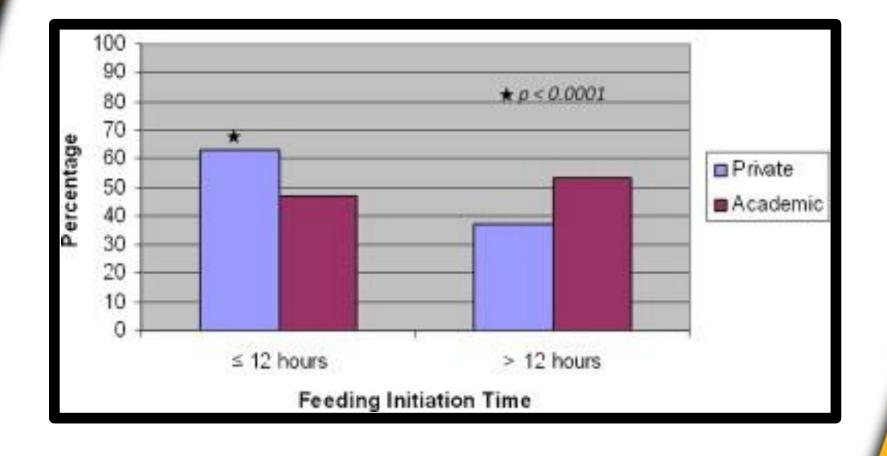

Minor Complications

Wound Infection Peristomal Leakage Pneumoperitoneum Ileus Bleeding Ulceration Clogging Tube Dysfunction Gastric Outlet Obstruction

POST-PEG FEEDING

• Complications:

• Death \leq 72 hours:


	Early Fee	eding	Delayed Fe	eding		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Choudhry et al	0	21	1	20	21.2%	0.30 [0.01, 7.87]	
Schulte-Bockholt et al	2	37	3	40	38.5%	0.70 [0.11, 4.47]	
Stein et al	2	40	3	40	40.3%	0.65 [0.10, 4.11]	
Total (95% CI)		98		100	100.0%	0.60 [0.18, 1.99]	
Total events	4		7				
Heterogeneity: Chi ² = 0.	21, df = 2 (P = 0.90	0); I² = 0%				
Test for overall effect: Z	= 0.84 (P =	: 0.40)					0.01 0.1 1 10 100 Favors Early Feeding Favors Delayed Feeding

• Residuals during first 24 hours:

	Early Feeding		Delayed Feeding		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
Choudhry et al	2	21	1	20	6.4%	2.00 [0.17, 23.96]		
Chumley et al	13	40	11	40	51.4%	1.27 [0.49, 3.31]		
Schulte-Bockholt et al	1	50	0	50	3.4%	3.06 [0.12, 76.95]		
Stein et al	10	37	8	40	38.8%	1.48 [0.51, 4.28]		
Total (95% CI)		148		150	100.0%	1.46 [0.75, 2.84]	-	
Total events	26		20					
Heterogeneity: Chi² = 0.35, df = 3 (P = 0.95); I² = 0%								
Test for overall effect: Z = 1.11 (P = 0.27)							0.01 0.1 1 10 100 Favors Early Feeding Favors Delayed Feeding	

Szary NM, et al. J Clin Gastroenterol 2011

POST-PEG FEEDING

Ali T, et al. Dig Liv Dis 2011

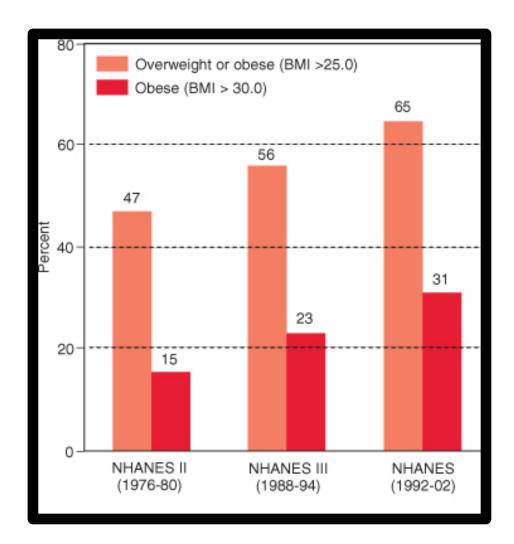
POS	F-PEG F	EEDING								
	444 PEC June 2006 – December									
PARAMETER	EARLY FEEDING (≤ 4 HOURS)	DELAYED FEEDING (> 4 HOURS)	P-VALUE							
	MORTALITY									
< 24 hours	0	0	NS							
24-72 hours	2	0	0.20							
3-30 days	14	19	0.86							
COMPLICATIONS										
Wound Infection	5	4	0.52							
Melena	0	3	0.26							
Vomiting	9	16	0.42							
Leakage	4	2	0.41							
Stomatitis	0	4	0.13							
Other	27	28	0.47							

F

Cobell, et al. South Med J 2014

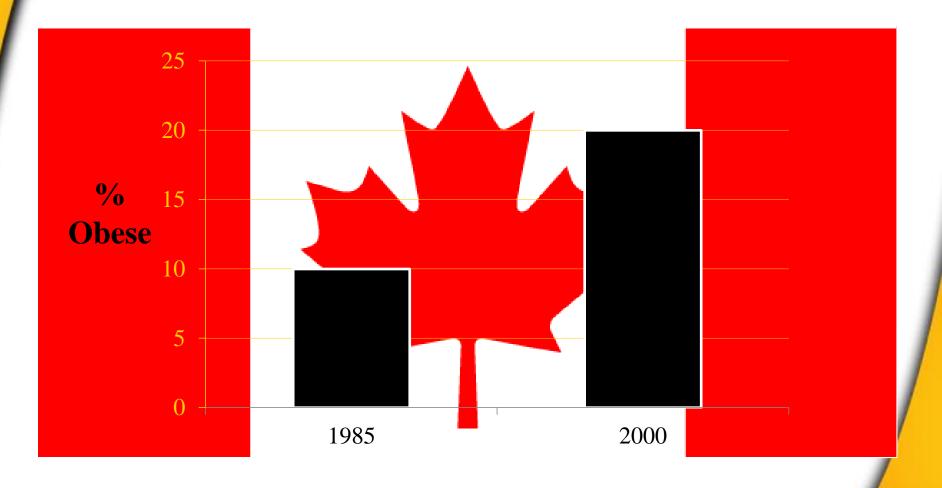
FUTURE NUTRITIONAL ISSUES

SHORT GUT SYNDROME

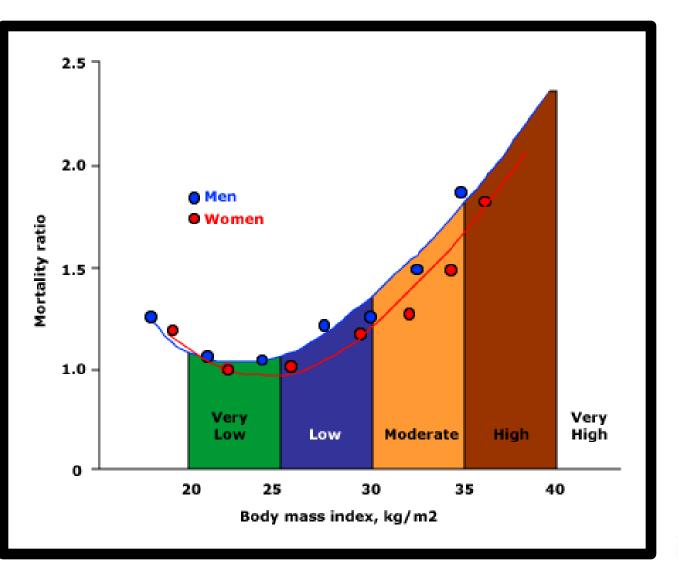


EATING DISORDERS

OBESITY



OBESITY


National Center for Health Statistics. CDC website – 2004 Feldman M, et al. Sleisenger & Fortran's Gastrointestinal and Liver Disease 2010

Katzmarzyk et al. CMAJ 2002

Klein S, et al. Gastroenterology 2002

CRITICAL CARE

OLD SCHOOL NEW SCHOOL

"Skeletons in the Closet" PEM in 50% pts US hospitals Support to prevent PEM PN-based, little effect

Maintain gut integrity Immune-modulation Down-regulate inflammation EN-based, huge effect

PERSPECTIVE ON ENTERAL FEEDING, OXIDATIVE STRESS, AND PHARMACONUTRITION

¥

CRITICAL CARE NUTRITION

GUT DOES MORE THAN CALORIES

GUT PLAYS A CRUCIAL ROLE IN INFLAMMATION

GUT CAN BE USED TO OUR ADVANTAGE

CONTROVERSY OF IMMUNE FORMULAS

WATCH FOR

* Dramatization only. No animals were hurt during the making of this lecture.