ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Kenneth Tobin, DO, FACC, FACOI
Ascension-Borgess Heart Center of Excellence
Kalamazoo, Michigan
KENNETH TOBIN, DO, FACC, FACOI

I have no disclosures
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Overview
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• Potentially reversible condition in which left ventricular systolic dysfunction is induced or mediated by atrial or ventricular arrhythmias.

• Early recognition of AIC and prompt treatment of the culprit arrhythmia results in symptom resolution and recovery of ventricular function.

• Although index presentation may take months to clinically present – recurrent arrhythmia can result in a rapid decline in ventricular function with development of heart failure which suggests residual ultrastructure abnormalities.
ARRHYTHMIA INDUCED CARDIOMYOPATHY

- AIC is defined as sufficient supraventricular or ventricular arrhythmias to result in left ventricular systolic dysfunction.

- The arrhythmia can be:
 - Sustained
 - Paroxysmal
 - Highly frequent ectopic activity

- The duration of the arrhythmia to induce LV systolic dysfunction is somewhat difficult to determine (symptom duration/etc.):
 - In animal models, rapid atrial pacing can produce AIC in 1 – 2 months

- When the inducing arrhythmia is corrected, restoration of normal LV systolic function usually occurs within 6 weeks.
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• First described in 1913
 • Gossage AM, Braxton Hicks JA. On auricular fibrillation. QJ Med. 1913;6:435–40

• Discovered to be reversible in 1962
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• **Type I AIC:**
 • Arrhythmia induced –
 • The arrhythmia is solely responsible for the AIC, and the LV function normalizes upon successful treatment of the arrhythmia

• **Type II AIC:**
 • Arrhythmia mediated -
 • Arrhythmia exacerbates the underlying cardiomyopathy and treatment of the arrhythmia results in partial resolution of the cardiomyopathy
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Epidemiology
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• Epidemiology:
 • Atrial fibrillation is present in 10 – 50% of patients with congestive heart failure.
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Pathophysiology
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• Afib is the most common cause of TIC
 • The pathophysiologic mechanisms underlying development of progression of cardiomyopathy include:
 • Tachycardia
 • Heart Rate
 • Irregularity
 • Loss of atrial systolic function
 • Genetic functions
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• The genetic susceptibility:
 • Why a similar burden of arrhythmia can have such variable effects on systolic function in different individuals.

• Tachycardia at >100 bpm and >15% of the day has the potential to result in AIC.

• Timing of onset of arrhythmia to clinical presentation or LV deterioration can vary widely and depend on:
 • Duration of sustained arrhythmia
 • Coexisting structural heart disease
 • Age
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• It is likely that AF unmasks an underlying tendency and susceptibility to develop a cardiomyopathy in patients with AIC.

• More than 50 causative genes have been implicated in dilated cardiomyopathy and may be identified in up to 30% of patients.

• The four major genes:
 • Titen (TTN)
 • Lamin A/C (LMNA)
 • B-myocin Heavy Chain (MYH7)
 • Cardiac Troponin T (TNNT2)
ARRHYTHMIA INDUCED CARDIOMYOPATHY

- Irregular contraction leads to adverse hemodynamic consequences that are independent of heart rate
 - Heart rate control in AF and noted LV systolic dysfunction improvement with restoration of sinus rhythm
 - AV dyssynchrony can impair diastolic filling which in turn worsens diastolic function thereby leading to increased left sided pressure and negative atrial remodeling, which in turn perpetuates atrial fibrillation
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• The mechanisms of AIC are not fully defined but include:
 • Subclinical ischemia
 • Abnormalities in energy metabolism
 • Redox stress & calcium overload
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• Pathophysiology:
 • Phase 1:
 • Compensatory phase (>7 days). During this phase, there is increased neurohormonal activation with early changes to the extracellular matrix and preserved LV systolic function.
 • Phase 2:
 • LV dysfunction phase (1-3 weeks). Continued neurohormonal activation and upregulation of the renin angiotensin system. There is cellular remodeling, contractile dysfunction with LV systolic dysfunction and dilatation.
 • Phase 3:
 • LV failure phase (>3 weeks). Further adverse LV remodeling with pump failure, severe dilatation, and abnormal intracellular calcium handling.
Mechanisms of tachycardiacmyopathy (TCMP). The molecular, microscopic, and structural effects of TCMP.
Cellular and Molecular Events

- **Initial tachyarrhythmia stimulus**
 - Myocyte
 - ECM

- **Extracellular matrix remodeling**

- **Cellular remodeling, contractile dysfunction, viability**

- **Defects in Ca^{2+} handling and severe contractile dysfunction**
 - Ca^{2+} ATPase
 - L-Type Ca^{2+} Channel

Natural History

- **Compensatory phase**
 - LV pump function normal
 - Sympathetic system activation
 - ~ >7 d

- **LV dysfunction phase**
 - LV pump dysfunction and dilation
 - LV myocardial contractile dysfunction
 - Neurohormonal activation; initial activation of RAAS
 - ~ 1-3 wks

- **LV failure phase**
 - LV pump failure and severe dilation
 - Systemic hemodynamic compromise
 - Significant neurohormonal activation; RAAS, vasoactive peptides
 - Pulmonary/systemic edema
 - ~ >3 wks
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Diagnosis
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• Atrial fibrillation is a very common arrhythmia
• Congestive Heart Failure is a very common diagnosis
• The needed heart rate for this to develop is not well defined
 • Likely lower than initially suspected
• Beat to beat variability plays a role in this disorder
 • May supersede heart rate
• Lack of persistent tachycardia from autonomic influences and resultant slower rates during sleep likely explains why AIC are rare or non-existent with inappropriate sinus tachycardia or postural tachycardia syndrome (POTS)
"No, you back off! I was here before you!"
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Treatment
RATE CONTROL OR RHYTHM CONTROL IN AIC

• Catheter ablation of atrial fibrillation in patients with concomitant left ventricular impairment: a systematic review of efficacy and effect on ejection fraction.

• Systematic review of 19 studies (914 patients)
 • 13.3 - 16% LVEF improvement in patients who underwent catheter ablation to restore sinus rhythm

ARRHYTHMIA INDUCED CARDIOMYOPATHY
RATE CONTROL OR RHYTHM CONTROL

• AATAC-AF trial
 • Randomized 203 persistent AF patients with HF and cardiomyopathy (LVEF<40%) to either amiodarone or catheter ablation
 • 70% of patients in the ablation arm were free of AT/AF
 • 34% in the amiodarone arm
 • LVEF improved 9.6% ±7.4% in the ablation arm
 • 4.2% ±6.2% in the amiodarone arm

ARRHYTHMIA INDUCED CARDIOMYOPATHY
RATE CONTROL OR RHYTHM CONTROL

Camera-MRI trial:

- 68 patients with persistent AF and DCM (EF <45%)
 - Rate control vs Catheter Ablation
 - F/U 6 months
 - CAD/other structural heart disease patients excluded
 - Average age 60
 - Average LVEF 33%
 - Average Chads-vasc score 2.4
 - Arrhythmic burden followed with implantable loop recorder

ARRHYTHMIA INDUCED CARDIOMYOPATHY

- **Camera-MRI trial:**
 - 18.3% LVEF improvement in the catheter ablation arm
 - 4.4% LVEF improvement in the medical rate control arm
 - 58% catheter based arm normalized their LVEF
 - 9% medical rate control arm normalized their LVEF
 - Absence of late gadolinium enhancement (LGE) portended better outcomes
 - 22% improvement: no LGE
 - 11% improvement: + LGE
ARRHYTHMIA INDUCED CARDIOMYOPATHY

RATE CONTROL OR RHYTHM CONTROL

• CASTEL-AF Trial:
 • Multi-center international study
 • Randomized 363 patients to ablation vs medical therapy (included rate or rhythm control)
 • Included both persistent and PAF patients
 • LVEF <35% (ischemic (40 – 50%) or non-ischemic)
 • All patients had ICDs or Bi-v ICDs
 • Mean follow-up 37 months

• Primary end point: Composite of death or CHF admission
 • Ablation Group: 51 patients (28.5%)
 • Medical Therapy group: 82 patients (44.6%)
 • At 60 months – absolute EF improved 8% in the ablation group vs 0% in the medical treatment group
 • *Subgroup analysis showed a greater benefit in the 25-35% LVEF group vs the < 25% group*

ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Future Focus
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• There is a subset of AIC patients who have experienced SCD
 • Either after the initial diagnosis and prior to normalization of LVEF
 • How do we identify these patients?
 • SCD may be more common in patients with recurrent AIC
 • Genetic assessment?
 • Cardiac MRI?
 • Does LGE define this population
 • Would other markers of regional wall motion abnormalities such as strain imaging with echocardiography be useful
ARRHYTHMIA INDUCED CARDIOMYOPATHY

- Recurrence of TIC:
 - There is evidence to suggest that recurrent tachycardia in patients who have previously had TIC may result in a faster and more severe onset of TIC than the initial presentation.
 - In one study of 24 patients with TIC, 5 had recurrent tachycardia associated with a rapid drop in EF and symptoms of clinical HF occurring within 6 months.
 - This suggests that there must be some structural cardiac abnormalities that persist after an apparent recovery in function.
 - Therefore, maintenance of a HF treatment regimen after normalisation of EF, and continued monitoring of patients for recurrence of arrhythmia may a prudent strategy in some patients –
 - But which patients – how do we identify them?
 - Genetic assessment?
ARRHYTHMIA INDUCED CARDIOMYOPATHY
FOCUS ON ATRIAL FIBRILLATION

Take Home Points
ARRHYTHMIA INDUCED CARDIOMYOPATHY

• There has to be a high clinical suspicion for this diagnosis in patients with CHF and Atrial Fibrillation:
 • Prompt Recognition
 • Especially if either is a new diagnosis
 • Standard Heart Failure treatment protocols should be followed
 • Rate Control may result in improvement of left ventricular systolic dysfunction – but restoration of NSR has been linked to the best short and long term outcomes
 • Restoration of NSR also helps answer the question of the chicken vs. egg issue