Contrast Nephropathy – Too Much or Too Little Concern? JEFFREY PACKER, D.O., FACOI, FASN, FASDIN CLINICAL ASSISTANT PROFESSOR - DEPARTMENT OF INTERNAL MEDICINE UNIVERSITY OF ARIZONA COLLEGE OF MEDICINE - PHOENIX CO-SITE DIRECTOR - INTERVENTIONAL NEPHROLOGY AND DIALYSIS ACCESS SURGERY AKDHC, LLC IN PHOENIX, ARIZONA #### Disclosures - Fresenius Medical Advisory Board - Research / Grants - C.R. Bard - Humacyte - Vascular Therapies, Inc. - W L Gore - None of this pertinent to this presentation # Please note WE WILL NOT BE DISCUSSING GADOLINIUM OR NEPHROGENIC SYSTEMIC FIBROSIS, JUST IODINATED CONTRAST #### Contrast Nephropathy – What is it? - Acute Kidney Injury occurring after exposure to iodinated radiocontrast media* - Usually reversible (but not always)** ^{*}Davidson CJ, Hlatky M, et al. Ann Intern Med 1989; 110(2):119. ^{*}Parfrey PS, Griffiths SM, et al. NEJM 1989; 320(3):143. ^{**}Rich MW, Crecelius CA. Arch Int Med 1990; 150(6):1237 ## Contrast Nephropathy – Possible Etiology - Actual cause not well understood - Tubular hypoxia and injury* - Viscosity** - Vasoconstriction d/t endothelial factors*** - Direct toxicity to tubular cells**** *Heyman SN, Rosenberger C, et al. Nephrol Dial Transplant 2005; 20 Suppl 1:i6. **Persson PB, Hansell P, Liss P. Kidney Int 2005; 68(1): 14. ***Cantley LG, Spokes K, et al. Kidney Int 1993; 44(6): 1217. ****Zager RA, Johnson ACM, et al. Kidney Int 2003; 64:128. ## Tubular Hypoxia and Injury - Inhibit mitochondria activity* - Increase adenosine by hydrolysis of ATP - Adenosine + Medullary Hypoxia generates "Oxygen Radicals" - These radicals "scavenge" Nitric Oxide #### Tubular Hypoxia and Injury - Increased oxygen consumption via Endothelin-A receptor*,** - Possible direct cytotoxicity d/t altered integrety of membranes*** *Heyman SN, et al. J Amer Soc Neph 3:58-65. 1992 **Wang A, et al. KI 57:1675-1680. 2000 ***Zager RA, et al. KI 64:128-139, 2003 #### Viscosity / Osmolality - Other substances like Mannitol or Hypertonic Saline cause similar histology* - Contrast enters tubule and, especially with any volume depletion, becomes more concentrated affecting tubular flow / fxn** - Increased blood viscosity affecting red cell deformability and increasing resistance to blood flow*** *Detrenis S, et al. Nephrol Dial Transplant 20:1452-1550. 2005 **Seeliger E, et al. Radiol 256(2):406-414. 2010 ***Basu a, et al. (Jul 3, 2017) emedicine.Medscape.com. Retrieved Aug 18, 2017 from http://emedicine.medscape.com/article/246751-overview#a5 #### Vasoconstriction – Direct and Indirect - Direct release endothelin and prostaglandins* - With adenosine activates A1 receptor constricting afferent arteriole - But also medullary vasodilatation vs constriction due to multiple mediators - Direct action of contrast on vascular smooth muscle cells** - Makes any pre-existing vascular pathology worse*** *Wong PC, et al. Int J Cardiol 158(2): 186-192, 2012 **Basu a, et al. (Jul 3, 2017) emedicine.Medscape.com. Retrieved Aug 18, 2017 from http://emedicine.medscape.com/article/246751-overview#a5 ***Lameier NG. Nephrol Dial Transplant. 21(6):i11-23, 2006 #### Direct Tubular Toxicity - Direct effect of contrast on tubular cells*, ** - Cytotoxicity causes apoptosis of tubular cells*** - Cellular casts obstruct *Sendeski MM. Clin Exp Pharm & Physio. 38:292-299, 2011 **Humes HD, et al. Am J Physio. 252:F246-F255, 1987 ***Caiazza A, et al. Biomed Research Int Vol 2014 Article ID 578974. 2014 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Decreased GFR - In absence of CKD, risk < 1% * - For those with decreased renal function, incidence after contrast study is 10 to 30% ** - Incidence of Contrast AKI increases proportional to baseline decrease GFR*** *Wilhelm-Leen E, et al. JASN 28(2):653. 2017 **Rudnick MR, et al. KI 47:254-261. 1995 ***Thomas T, et al. JACC Cardiovasc Interv 7(1):1-9, 2014 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Proteinuria - Additional risk factor for contrast nephropathy* - May be an independent risk ** *Piskinpasa S, et al. Ren Fail 35(1):62, 2013 **Tao Y, et al. J Neurointerv Surg 9(5):455, 2017 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Age - GFR tends to decrease with aging even in normal - Association between age > 65 and AKI from contrast* - Age > 75 associated with 1.5 to 5x increased risk with increased incremental risk with each additional year of age** - BUT another retrospective review of 5006 patients did not find age to be a risk factor*** - Perhaps age, by itself is not the issue but co-morbidity is *Palli E, et al. Oxid Med Cell Longev, Jan 28, 2014 **Mardani S, et al. J Nephroharm, 2(2):27-30, 2013. ***Traub SJ, et al. Academ Emerg Med, 20:40-45, 2013 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Presence of DM - Increased oxygen consumption in DM kidney* - Increased snGFR in diabetic kidney** - Often see micro and macro vascular disease in DM*** - Diabetic status associated with bloodflow issue, increased snGFR, hampered antioxidant capacity, altered sensitivity to chemical mediators **** *Hansell P, et al. Clin Exp Pharm and Physio 40(2):123-137, 2013 **Bak M, et al. JASN 11(7):1287-1292, 2000 ***Heyman SN, et al. CJASN 3(8):288-296, 2008 ****Heyman SN, et al. Biomed Res Int, Nov 21, 2013 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Dose of Contrast - More contrast amount leads to more AKI* - Safety demonstrated with <10mL fistula study in CKD population** - Safety demonstrated with IV vein mapping in CKD (<20 mL contrast)*** *Marenzi G, et al. Ann Int Med 150(3):170, 2009 **Kian K, et al. KI 69(8):1444, 2006 ***Asif A, et al. Semin Dial 18(3):239-242, 2005 - Type of contrast* - New lower osmolar agents <u>possibly</u> less risk BUT data not conclusive* - Iodixanol may have a unique benefit over others BUT AGAIN, conflicting data and studies exist** *Lautin EM, et al. AJR 157(1):59, 1991 **Eng J, et al. Ann Int Med 164(6):417, 2016. - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - ACEI / ARB Use - May be an independent risk factor for contrast AKI* - Significant increase (11.4 vs 6.3%) in patients on ACEI/ARB** - BUT, other data suggests no association*** *Umruddin Z, et al. J Nephrol 25(5):776-781, 2012 **Rim MY, et al. Am J Kid Dis 60:576, 2012. ***Zhou L and Duan S. Kidney Blood Press Res 38:165-171, 2013. - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Volume Status - May be relative issue (decreased cardiac, etc) - Can adversely affect GFR increasing risk - Can lead to more avid re-absorbtion and even higher osmotic forces in tubules - Some conflicting data but most accept as a risk factor* *Pakfetrat M, et al. IJKD 4(2):116-122, 2010 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes #### PG Inhibition - NSAIDs can adversely affect renal function especially with dehydration or decreased effective renal bloodflow* - Any decrease GFR can increase risk of contrast nephropathy - Prostaglandins involved in response to contrast** - Not clear that NSAIDs increase risk of contrast nephropathy independently** *Huerta C, et al. Am J Kidney Dis 45(3):531, 2005 **Heyman SN, et al. Invest Radiol 45:188-195, 2010 ***Diogo LP, et al. Arg Bras Cardiol 95(6):726-731, 2010 - Decreased GFR - Proteinuria - Age - Presence of DM - Dose of Contrast - Type of Contrast - ACEI / ARB Use - Volume Status - PG Inhibition - Hyperviscosity Syndromes - Hyperviscosity Syndromes - Can cause pre-existing issues with microscopic bloodflow - Incidence 0.6 1.25% in MM patients compared to normal* - Subsequent review showed little correlation in MM patients with normal GFR but correlation to b2-macroglobulin levels** - Risk may be due to the effect of the disease and not the viscosity *McCarthy CS and Becker JA. Radiology 183(2):519-521, 1992 **Pahade JK, et al. AJR 196:1094-1101, 2011 # Contrast Toxicity – Is it so bad? - Acute - Transient decrease renal function 3 to 7 days after exposure - Most recover after 5 to 7 days from peak - Some may have persisting decrease GFR compared to baseline - Length of stay and short term mortality higher* - More likely to require renal replacement therapy** *Alderson S, et al. Critical Care 18(Suppl 1):374, 2014 **Kim SM, et al. AJKD 55(6):1018-1025, 2010 #### Contrast Toxicity – Is it so bad? - Long term - Risk of cardiovascular, cerebrovascular, and all cause mortality increased* - Worse "event-free" outcomes in those with contrast nephropathy** - Even in those that recover, long term mortality increased - But, effect of nephropathy or of co-morbidities? *Saito A, et al. IJ Card 227:424-429, 2017 **Cho JY, et al. Jour Card 56(3):300-306, 2010 # Contrast Toxicity — Is it so bad? - The water is muddy* - Contrast? - Atheroembolic disease? - Co-morbidities? - "Selection bias?" - Which patients get these studies? *Rudnick M and Feldman H. CJASN 3(1):263-272, 2008 #### Contrast Toxicity – Can we prevent?* - Mannitol / Lasix - Ca++ Blockers - Dopamine / Fenoldopam - Endothelin Receptor Antagonist (Ambrisentan) - Prostacycline - Atrial Natiuretic Peptide - Adenosine Agonists (Theophylline, Aminophylline) - Bicarbonate - Statins - Acetylcysteine - Fluids - Limit exposure *Wong PC, et al. Int J Cardiol 158(2): 186-192, 2012.; Bakris GL, et al. KI 56:206-210, 1999.; Kini AS, et al. Am J Cardiol 89:999-1002, 2002.; Lewis JB, et al. JASN 9:134A, 1998.; Gleeson TG, et al. Am J Roentgen 183:1673-1689, 2004.; Shammas NW et al. J Invasive Cardiol 13:738-740, 2001 #### N-Acetylcysteine? "The only well established treatment for the prevention of CIN is intravenous hydration" Steven Fishbane CJASN 3(1):281-287, 2008 From Ali-Hassan-Sayegh S, et.al. Angiology 2016 # Contrast Toxicity - Treatment - Avoid further insult - Fluids - Bicarb? - Diuretic? - Dialysis - Avoid No Contrast, No Toxicity - Find alternate diagnostic study - Use less - Angiography in CKD - Vein mapping in CKD - Avoid - Use less - Hydrate - Bicarb? - Avoid - Find alternate diagnostic study - Use less - Hydrate - Bicarb? - Acetylcysteine? - Avoid - Find alternate diagnostic study - Use less - Hydrate - Low ionic dye - Bicarb? - Acetylcysteine? - Be afraid! (Dry, DM, GFR, Hyperviscosity, NSAIDs)