Initiation and Management of Airway Pressure Release Ventilation (APRV)

Eric Kriner RRT
Pulmonary Critical Care Clinical Specialist
Pulmonary Services Department
Medstar Washington Hospital Center
Disclosures

• Clinical simulation & presentation author for IngMar Medical

• Funding from Nellcor Puritan Bennett LLC / Covidien for speaking engagements

• Unless cited, the contents and conclusions of the following presentation are solely those of the speaker.
All three of these techniques increase the mean airway pressure and provide for alveolar stability.

- **↑ pressure**
- **↑ inspiratory time**
- **↓ expiratory time**
• With increased mean airway pressure and improved alveolar stability there is improvement in ventilation and perfusion matching
 • Improved gas exchange
 • Reduced deadspace ventilation
 – More efficient ventilation with lower V_T / V_E
• With increased mean airway pressure and improved alveolar stability there is a presumed or theoretical decrease in the incidence of VILI
4. Alveoli can also be recruited by allowing the patient to spontaneously breathe
 - Ventilation of a patient with a relaxed diaphragm is preferentially delivered to the anterior portions of the lung
 • This produces regional extremes in V/Q matching with some lung units exhibiting deadspace ventilation and some units exhibiting shunting
4. Alveoli can also be recruited by allowing the patient to spontaneously breath
 – During diaphragmatic contraction, volume is more uniformly delivered throughout the lung and especially to the dorsal lung regions
 – In addition, pleural pressure will decrease, thereby reducing the forces that an inspiratory volume will have to overcome in order to recruit an alveoli
<table>
<thead>
<tr>
<th>mode</th>
<th>volume A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO₂</td>
<td>1.0</td>
</tr>
<tr>
<td>Flow</td>
<td>90</td>
</tr>
<tr>
<td>PIP</td>
<td>38</td>
</tr>
<tr>
<td>RR</td>
<td>35</td>
</tr>
<tr>
<td>PP</td>
<td>32</td>
</tr>
<tr>
<td>Vₜ</td>
<td>420</td>
</tr>
<tr>
<td>MAP</td>
<td>23</td>
</tr>
<tr>
<td>Vₑ</td>
<td>14.7</td>
</tr>
<tr>
<td>PEEP</td>
<td>15</td>
</tr>
<tr>
<td>pH</td>
<td>7.18</td>
</tr>
<tr>
<td>O₂</td>
<td>51</td>
</tr>
<tr>
<td>CO₂</td>
<td>72</td>
</tr>
<tr>
<td>SaO₂</td>
<td>84%</td>
</tr>
</tbody>
</table>
• If APRV is used as a “rescue” mode of ventilation or a “last resort” there will be a delay in the alveolar recruitment seen with this mode of ventilation

• Two things occur because of difficulty in recruiting collapsed and flooded alveoli

 1. CO$_2$ elimination will diminish and the PaCO$_2$ will increase

 – The minute ventilation will be dramatically decreased at the initial switch from volume ventilation to APRV

 2. The expected decrease in FiO$_2$ or pressure may not be realized

 – Once the collapsed alveoli are re-recruited the blood gases should normalize

• As a result APRV should be initiated early in the course of acute lung injury

 – Within 4-8 hours of LPS failure
P_{HIGH}

P_{LOW}

T_{HIGH}

T_{LOW}

ventilation

mode	**volume A/C**
FiO$_2$ | 1.0
Flow | 90
PIP | 38
RR | 35
PP | 32
V$_T$ | 420
MAP | 23
V$_E$ | 14.7
PEEP | 15
pH | 7.08
O$_2$ | 51
CO$_2$ | 82
SaO$_2$ | 84%
Table: Ventilation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>volume A/C</td>
<td></td>
</tr>
<tr>
<td>FiO₂</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>PIP</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>PEEP</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>SaO₂</td>
<td>84%</td>
<td></td>
</tr>
</tbody>
</table>

Oxygenation

- **P_{HIGH}**
- **P_{LOW}**
- **T_{HIGH}**
- **T_{LOW}**
• The principles of VILI (FiO₂ toxicity, volutrauma & atelectrauma) have NOT changed and are still applicable despite the change in mode.
• \(\text{FiO}_2 \leq 0.60 \)
• \(V_T \leq 6 \text{ ml/kg IBW} \)
• Prevent RACE injury with appropriate air trapping

Oxygenation

Ventilation
- **P** _HIGH_:
- **P** _LOW_:
- **T** _HIGH_:
- **T** _LOW_:

ventilation

oxygenation

- FiO$_2$ ≤ 0.60
- V_T ≤ 6 ml/kg IBW
- Prevent RACE injury with appropriate air trapping
 - +
 - If hypoxic, generate a mPaw ≥ 5cmH$_2$O than mPaw on LPS
- Generate a V_E sufficient to maintain adequate ventilation
• The P_{HIGH} should be set at 30–35 cmH₂O initially
 – Promotes alveolar recruitment by generating a sufficient mPaw
 – Promotes an adequate change in pressure (ΔP) to generate a release volume

• An attempt to titrate the P_{H} to ≤ 30 cmH₂O should be made as soon as compliance improves (\uparrow release volume)
• The T_{HIGH} should be set at 3.0-3.5 sec initially
 – Promotes alveolar recruitment by generating a sufficient $m\text{Paw}$
 – Promotes alveolar recruitment by generating a sufficient inspiratory time constant
 • Average inspiratory time constant for ARDS is 0.7 sec
 • To achieve 100% aeration/recruitment requires 5 time constants
 – Promotes an adequate RR to generate a sufficient minute volume
• The T_{HIGH} should be set at 3.0-3.5 sec initially
 – A T_{H} of 3.0-3.5 sec will mean a release rate of 14-16 will be the initial setting

 – An attempt to titrate the T_{H} to a higher value should be made as soon as deadspace improves ($\downarrow \text{CO}_2$)
• The P_{LOW} should be set at 0-5 cmH$_2$O initially
 – P_L is usually set at or near ambient pressure (0 cmH$_2$O) to generate an adequate ΔP
• The magnitude of the ΔP will determine the release volume
• The magnitude of the ΔP will also determine the expiratory flow
 – A higher ΔP will accelerate expiratory flow
• The P_{LOW} should be set at 0-5 cmH$_2$O initially

 – The P_L may be set > 0 cmH$_2$O if it is felt that compliance is such that additional FRC is needed to recruit alveoli

 – If the T_{LOW}, as explained on subsequent slides, requires a parameter setting < 0.7 sec, the expiratory time constant and compliance are such that the P_L greater than 0 cmH$_2$O may be required
Variable expiratory flow and time constants

- The expiratory flow exits from portions of the lung at different flow rates or time constants.

- A diseased, or non-compliant, lung unit has a relatively strong recoil on exhalation.

- The flow exiting this non-compliant lung unit will thus be relatively fast and have a short time constant.
• Variable expiratory flow and time constants
 – The expiratory flow exits from portions of the lung at different flow rates or time constants

• A healthy, or compliant, lung unit has a normal elastic recoil

• The flow exiting the compliant lung unit will be comparatively slower and have a longer time constant
• Variable expiratory flow and time constants
 – The time frame, or T_{LOW}, required to trap an appropriate amount of flow in a healthy lung is therefore different than the T_{LOW} required to trap the appropriate amount of flow in a diseased lung

• In the example to the right, the T_{LOW} is set to trap the appropriate expiratory flow from a healthy lung unit
Variable expiratory flow and time constants

- The time frame, or T_{LOW}, required to trap an appropriate amount of flow in a healthy lung is therefore different than the T_{LOW} required to trap the appropriate amount of flow in a diseased lung.

- If the T_{LOW} is set to trap flow exiting from the healthy lung unit, then the diseased lung unit will completely empty.
• Variable expiratory flow and time constants
 – If gas exchange is not improving as expected and the T_L is required to be $< 0.7 \text{ sec}$, then the use of $P_L > 5 \text{ cmH}_2\text{O}$ may be warranted to maintain alveolar recruitment.
• The T_{LOW} should be set at 0.8 sec initially

• However, the T_{L} is more precisely set to prevent complete emptying of the lung at end-expiration
 – Requires analysis of the end-expiratory flow and subsequent precision of the ventilator setting
• The T_L is more precisely set to prevent complete emptying of the lung at end-expiration
 – Identify the peak expiratory flow rate (in this case 80 LPM)
 – Set the T_L so that the expiration terminates at a flow approximately 25-50% of the peak expiratory flow rate (in this case between 20-40 LPM)
• The T_L is more precisely set to prevent complete emptying of the lung at end-expiration
 – Upon release and opening of the exhalation valve, the compressible volume flows rapidly out of the system
• The T_L is more precisely set to prevent complete emptying of the lung at end-expiration
 – The point at which the expiratory flow separates should be identified as the peak expiratory flow
Careful observation of the T_H and T_L is warranted when the patient is spontaneously breathing

- Some ventilators will alter the set times to synchronize the pressure changes with the patient spontaneous respiratory efforts
- The implication is a changing T_L that may become inappropriate if the patient were to cease spontaneous efforts
• Correction of ABG abnormalities
 – It is important to understand that when managing cyclic ventilation, those parameters that correct for ventilation and those parameters that correct for oxygenation are typically decoupled and do not effect each other
 – However, the parameters that correct for ventilation and oxygenation in APRV are NOT decoupled and DO effect each other, often in a competing way
• Correction of PaCO₂
 – The fundamentals of correcting PaCO₂ in APRV is no different than in any other mode…..you need to adjust minute ventilation OR increase/decrease Vₜ or increase/decrease RR

 If CO₂ is high

 !Diagram showing adjustments for high CO₂

 - **↑PHIGH**
 - **↓PLOW**
 - **↓T_HIGH**
 - **↑T_LOW**

 Unintended consequence

 - **↑mPaw**
 - **↑O₂**
 - **↓mPaw**
 - **↓O₂**
 - **↓mPaw**
 - **↓O₂**
 - **↓mPaw**
 - **↓O₂**
• Correction of PaO\textsubscript{2}
 – The fundamentals of correcting PaO\textsubscript{2} in APRV is no different than in any other mode.....you need to increase or decrease the MAP

- If O\textsubscript{2} is low
 - \(P_{HIGH} \)
 - \(P_{LOW} \)
 - \(T_{HIGH} \)
 - \(T_{LOW} \)

Unintended consequence

- \(\uparrow \) volume
- \(\downarrow \) CO\textsubscript{2}
- \(\downarrow \) volume
- \(\uparrow \) CO\textsubscript{2}
- \(\uparrow \) RR
- \(\uparrow \) CO\textsubscript{2}
- \(\downarrow \) volume
- \(\uparrow \) CO\textsubscript{2}
The clinician should be observant for any changes in compliance that may require a coinciding change to the P_H.

In addition, the clinician must also be observant for changes in either the compliance or the P_H that would result in a change to the lung volume:

- When there is a change in lung volume there may be a consequential change to the expiratory time constant.
- This change in the expiratory time constant may require a different T_L to assure the termination of expiratory flow.
• Pressure support
 – Pressure support may be added in support and augmentation of spontaneous tidal volumes

• However, the total pressure during a spontaneous breath is mathematically calculated by adding the PS to the P_L
 – This is done even if the spontaneous breath occurs during the P_H
 – The actual PS applied can be calculated in this fashion

$PS \text{ applied} = (PS + P_L) - P_H$

$PS \text{ applied} = 15 \text{ cmH}_2\text{O}$
• High **LUNG** volume
 – Excessive lung volume leads to alveolar overdistension and is the result of
 • P_H is too high \rightarrow decrease P_H
 • P_L is too high \rightarrow decrease P_L
 • T_L is too short \rightarrow increase T_L
• High **LUNG** volume
 – Excessive lung volume leads to alveolar overdistension resulting in a number of clinical manifestations
 • Increased RV afterload
 • Increased PVR
 • Decreased CO/BP

• A decrease in release volume as the lung volume approaches total lung capacity

• Unexplained deterioration in gas exchange
 – Increased deadspace ventilation

• The patient will exhibit abdominal accessory muscle use during spontaneous ventilation in an attempt to decrease lung volume during exhalation
• Low **LUNG** volume

– A low lung volume will result in alveoli that remain derecruited and at risk for atelectrauma

– Alveolar derecruitment will result in a number of clinical manifestations
 • Deterioration (or lack of improvement) in gas exchange
 • Decrease (or lack of improvement) in release volume
 • Use of the inspiratory accessory muscles in an attempt to recruit alveoli upon spontaneous inspiration
• Low LUNG volume
 – A low lung volume will result in alveoli that remain derecruited and at risk for atelectrauma
 • \(P_H \text{ is too low } \rightarrow \text{ increase } P_H \)
 • \(P_L \text{ is too low } \rightarrow \text{ increase } P_L \)
 • \(T_H \text{ is too short } \rightarrow \text{ increase } T_H \text{ (decrease RR)} \)
 • \(T_L \text{ is too long } \rightarrow \text{ decrease } T_L \)
• As the patient improves the clinician will see a gradual rise in V_T
 – Lower the P_H in a gradual fashion
 – As the P_H is decreased the T_H should be extended
 • Extending the T_H maintains the mean airway pressure and alveolar recruitment
 • It also allows for more spontaneous respirations
 • This is called “drop and stretch”

• This progression can evolve towards traditional CPAP where the P_H is decreased to 8-5 cmH$_2$O and the T_H is stretched to allow only a very few releases
• For any decrease in P_H it is not necessary to increase the T_H
 – The patient must be able to support the minute ventilation necessary for gas exchange
 – In patients for whom the P_H is adjusted solely for CO_2 management it is not necessary to adjust the T_H coincidingly
- Patients with obstructive disease may require extremely long release times, or T_L

- Additional applied air trapping may be detrimental to the patient
- To minimize this risk the T_L should still be set at 25-50% of the PEFR but will have to be extended to do so
- As the T_L is extended the trend is more towards cyclic ventilation
• Patient populations for which an elevated mPaw may be detrimental, this mode may not be tolerated
 – Neurosurgical patients for whom limitation of intracranial pressure is of central importance
 – Patients with an active air leak will not tolerate this mode because the increased mPaw and increased T_H will exacerbate the air leak

• Patients with the inability to tolerate permissive hypercapnea should not be managed with APRV