ACCORD TRIAL- BLOOD PRESSURE

(effect of Intensive Blood Pressure Control in Type 2 Diabetes)

Jeffrey S. Freeman DO FACOI
Professor of Internal Medicine
Chairman Division of Endocrinology and Metabolism
Philadelphia College of Osteopathic Medicine
Two Previous Studies Measuring Outcome and Blood Pressure

SHEP
NAVIGATOR
UKPDS
HOT
Why was ACCORD Blood Pressure Trial performed?

- Lack of evidence to support Blood pressure less than 135-140 for prevention CVD in T2DM
UKPDS Results: Tight BP Control

Risk Reduction*

- Any diabetes-related endpoint: $P=0.0046$, Reduction = 24%
- Diabetes-related death: $P=0.019$, Reduction = 32%
- Stroke: $P=0.013$, Reduction = 44%
- Microvascular endpoints: $P=0.0092$, Reduction = 37%
- Retinopathy progression: $P=0.0038$, Reduction = 34%
- Deterioration of vision: $P=0.0036$, Reduction = 47%
- Heart failure: $P=0.0043$, Reduction = 56%

*Compared with less tight control. Captopril and atenolol were equally effective in reducing risk and were equally safe in patients with diabetes.

CVD Risk Reduction From Tight Control of BP and Glucose in Type 2 Diabetes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>10-Year Absolute Risk Reduction</th>
<th>NNT<sub>B</sub> BP/Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any diabetes endpoint</td>
<td></td>
<td>8.9/31.2</td>
</tr>
<tr>
<td>Diabetes-related death</td>
<td></td>
<td>16.4/112.1</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td>23.3/125.3</td>
</tr>
<tr>
<td>MI</td>
<td></td>
<td>23.3/46.2</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td>22.7/169.4</td>
</tr>
<tr>
<td>PV death or amputation</td>
<td></td>
<td>83.3/192.7</td>
</tr>
<tr>
<td>Microvascular</td>
<td></td>
<td>17.2/41.9</td>
</tr>
</tbody>
</table>

Relative Risk With 95% Confidence Interval

PV = peripheral vascular; NNT_B = number-needed-to-treat for benefit

HOT Trial: Effect of Targeted DBP on Cardiovascular Events Over 4 Years

Events/1,000 patient-years

- ≤90: 24.4
- ≤85: 18.6
- ≤80: 11.9

51% risk reduction, P=0.005

- ≤90: 9.9
- ≤85: 10.0
- ≤80: 9.3

P=NS

Patients with diabetes (n=1,501)

All patients (n=18,790)

<table>
<thead>
<tr>
<th>Goal</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C</td>
<td><7.0%<sup>a</sup></td>
</tr>
<tr>
<td>Blood pressure</td>
<td><130/<80 mm Hg</td>
</tr>
<tr>
<td>Lipids</td>
<td>LDL-C: <100 mg/dL</td>
</tr>
<tr>
<td></td>
<td><70 mg/dL for those with diabetes and CVD</td>
</tr>
<tr>
<td></td>
<td>For maximally tolerated, drug-treated</td>
</tr>
<tr>
<td></td>
<td>patients who do not reach target, reduction</td>
</tr>
<tr>
<td></td>
<td>in LDL-C 30%–40% from baseline is</td>
</tr>
<tr>
<td></td>
<td>alternative</td>
</tr>
</tbody>
</table>

^aReferenced to a nondiabetic range of 4.0%–6.0% using a Diabetes Control and Complications Trial-based assay.

CVD=cardiovascular disease.
Inclusion criteria

- Type 2 Diabetes
- Hgb A1C ≥ 7.5%
- 40 years of age or older with CVD or 55 years of age or older with anatomical evidence of risk
- Individuals with systolic blood pressure 130-180 mm Hg taking three or fewer antihypertensive medications and a 24 protein of less than 1 gm
Exclusion Criteria

- BMI more than 45
- Serum creatinine more than 1.5 mg/dl
- Other serious illness
ACCORD Double 2 x 2 Factorial Design

<table>
<thead>
<tr>
<th></th>
<th>Lipid</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
<td>Intensive</td>
</tr>
<tr>
<td>Intensive</td>
<td>1383</td>
<td>1178</td>
</tr>
<tr>
<td>Glycemic Control</td>
<td>1374</td>
<td>1193</td>
</tr>
<tr>
<td>Standard</td>
<td>1370</td>
<td>1184</td>
</tr>
<tr>
<td>Glycemic Control</td>
<td>1391</td>
<td>1178</td>
</tr>
<tr>
<td>Total</td>
<td>2753</td>
<td>2362</td>
</tr>
<tr>
<td></td>
<td>2765</td>
<td>2371</td>
</tr>
<tr>
<td></td>
<td>5518</td>
<td>4733*</td>
</tr>
</tbody>
</table>

94% power for 20% reduction in event rate, assuming standard group rate of 4% / yr and 5.6 yrs follow-up
ACCORD- Blood Pressure (Design)

- Randomized nonblinded trial at 77 clinical sites in United States and Canada

- Entire ACCORD trial 10,251 high-risk participants with stable type 2 diabetes mellitus (glucose control was the driver)

- Randomly assigned to targeted therapy of 120 mm Hg (intensive treatment) or 140 mm Hg (standard therapy)

- Treatment strategy study to achieve blood pressure goal rather than evaluating efficacy of a specific therapy
Primary Endpoint

- Composite of Nonfatal MI, nonfatal stroke, and CVD death
- Intensive less than 120mm Hg
- Standard less than 140mm Hg
ACCORD BP Trial Eligibility

- **Stable Type 2 Diabetes >3 months**
- **HbA1c 7.5% to 11% (or <9% if on more meds)**
- **High CVD risk = clinical or subclinical disease or ≥2 risk factors**
- **Age (limited to <80 years)**
 - ≥ 40 yrs with history of clinical CVD (secondary prevention)
 - ≥ 55 yrs otherwise
- **Systolic blood pressure**
 - 130 to 160 mm Hg (if on 0-3 meds)
 - 161 to 170 mm Hg (if on 0-2 meds)
 - 171 to 180 mm Hg (if on 0-1 meds)
- **Urine protein <1.0 gm/24 hours or equivalent**
- **Serum Creatinine ≤1.5 mg/dl**
Drug Titration

- Many drugs/combinations provided to achieve goal BP according to randomized assignment.

Intensive Intervention:

- 2-drug therapy initiated: thiazide-type diuretic + ACEI, ARB, or β-blocker.
- Drugs added and/or titrated at each visit to achieve SBP <120 mm Hg.
- At periodic “milepost” visits: addition of another drug “required” if not at goal.

Standard Intervention:

- Intensify therapy if SBP ≥160 mm Hg @ 1 visit or ≥140 mm Hg @ 2 consecutive visits
- Down-titration if SBP <130 mm Hg @ 1 visit or <135 mm Hg @ 2 consecutive visits
Medications Prescribed (12 Month Visit)

Participants (%)

ACE-Inhibitor ARB ACE or ARB Diuretic β-blocker CCB α-blocker Reserpine Other Statin Platelet Inhibitor

Red: Intensive Blue: Standard
ACCORD BP: Effects of Intensive BP-Control on Type 2 Diabetes

- Evaluated effects of intensive BP control (<120 mm Hg SBP) on CVD events among high-risk subjects with type 2 diabetes
- Subjects (N=4,733)
 - SBP between 130-180 mm Hg
 - taking ≤3 antihypertensives
 - <1.0 g 24-hour protein exchange rate
 - randomized to intensive (SBP <120 mm Hg) or standard (SBP <140 mm Hg) therapy
 - BP assessment was conducted once/month for 4 months and every 2 months thereafter for intensive therapy, and at months 1 and 4 and every 4 months thereafter for standard therapy
- Primary outcome: first occurrence of major CV event, including nonfatal MI, nonfatal stroke, or death from CV causes

ACCORD=Action to Control Cardiovascular Risk in Diabetes
BP=blood pressure; CVD=cardiovascular disease; MI=myocardial infarction; SBP=systolic blood pressure

Visit schedule

- Intensive arm once monthly for 4 months
- Every 2 months thereafter

- Standard arm months 1 and 4 then 4 months thereafter

- Additional visits were scheduled on an as needed basis
- 4 month visits study outcome and adverse events were ascertained –some of which were self reported
Systolic Pressures (mean ± 95% CI)

Average after 1st year: 133.5 Standard vs. 119.3 Intensive, Delta = 14.2
What do you observe?

- Within 4 months BP reduced to 119 mm Hg in the intensive arm verses 134 mm Hg in the standard arm
 (15 mm difference)
Primary Outcome: Nonfatal MI, Nonfatal Stroke or CVD Death

Event 15

HR = 0.88
95% CI (0.73-1.06)

Years Post-Randomization

Patients with Events (%)
Nonfatal Stroke

Total Stroke

Patients with Events (%)

Years Post-Randomization

Intensive Standard

HR = 0.63

95% CI (0.41 - 0.96)

HR = 0.59

95% CI (0.39 - 0.89)

Patients with Events (%)

Years Post-Randomization

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Primary & Secondary Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Intensive Events (% / yr)</th>
<th>Standard Events (% / yr)</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>208 (1.87)</td>
<td>237 (2.09)</td>
<td>0.88 (0.73-1.06)</td>
<td>0.20</td>
</tr>
<tr>
<td>Total Mortality</td>
<td>150 (1.28)</td>
<td>144 (1.19)</td>
<td>1.07 (0.85-1.35)</td>
<td>0.55</td>
</tr>
<tr>
<td>Cardiovascular Deaths</td>
<td>60 (0.52)</td>
<td>58 (0.49)</td>
<td>1.06 (0.74-1.52)</td>
<td>0.74</td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>126 (1.13)</td>
<td>146 (1.28)</td>
<td>0.87 (0.68-1.10)</td>
<td>0.25</td>
</tr>
<tr>
<td>Nonfatal Stroke</td>
<td>34 (0.30)</td>
<td>55 (0.47)</td>
<td>0.63 (0.41-0.96)</td>
<td>0.03</td>
</tr>
<tr>
<td>Total Stroke</td>
<td>36 (0.32)</td>
<td>62 (0.53)</td>
<td>0.59 (0.39-0.89)</td>
<td>0.01</td>
</tr>
<tr>
<td>Adverse Event</td>
<td>Intensive N (%)</td>
<td>Standard N (%)</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Serious AE</td>
<td>77 (3.3)</td>
<td>30 (1.3)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>17 (0.7)</td>
<td>1 (0.04)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Syncope</td>
<td>12 (0.5)</td>
<td>5 (0.2)</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Bradycardia or Arrhythmia</td>
<td>12 (0.5)</td>
<td>3 (0.1)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>9 (0.4)</td>
<td>1 (0.04)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Renal Failure</td>
<td>5 (0.2)</td>
<td>1 (0.04)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>GFR ever <30 mL/min/1.73m²</td>
<td>99 (4.2)</td>
<td>52 (2.2)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Dizziness on Standing†</td>
<td>217 (44)</td>
<td>188 (40)</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>
The ACCORD BP trial evaluated the effect of targeting a SBP goal of 120 mm Hg, compared to a goal of 140 mm Hg, in patients with type 2 diabetes at increased cardiovascular risk.

The results provide no conclusive evidence that the intensive BP control strategy reduces the rate of a composite of major CVD events in such patients.
Summary

- ACEI/ARB were the most commonly used medications
- There was no difference in the primary outcome composite of nonfatal MI, nonfatal stroke or CVD death
- Secondary outcome of nonfatal and fatal stroke was significantly improved in the intensively treated verses standard groups (numbers of events were small 32 Int verses 62 Std)
- Side effects of syncope and hypotension was greatest in the intensively treated group (2.6 fold)
- Hypokalemia more individuals in the intensively treated group
- Same number in both groups progressed to ESRD (systolic BP to 140 mm Hgb may be sufficient to progress to ESRD)
- End of study intensively treated group had lower GFR than standard group
- Small number of stroke events and under powdered

 94% power for 20% reduction in event rate, assuming standard group rate of 4% / yr and 5.6 yrs follow-up
Stroke Results

- Assuming that this finding was real, the number needed to treat to the lower SBP level to prevent one stroke over 5 years was 89.
<table>
<thead>
<tr>
<th>Clinical Parameters assessed at last clinic visit</th>
<th>Intensive</th>
<th>Standard</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium (mean mg/dl)</td>
<td>4.3</td>
<td>4.4</td>
<td>0.17</td>
</tr>
<tr>
<td>Serum Creatinine (mean mg/dl)</td>
<td>1.1</td>
<td>1.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Estimated GFR (mean mL/min/1.73m²)</td>
<td>74.8</td>
<td>80.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Urinary Alb/Cr (median mg/g)</td>
<td>12.6</td>
<td>14.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Macroalbuminuria (%)</td>
<td>6.6</td>
<td>8.7</td>
<td>0.009</td>
</tr>
</tbody>
</table>